• Bates, P. D., , K. J. Marks, , and M. S. Horritt, 2003: Optimal use of high-resolution topographic data in flood inundation models. Hydrol. Processes, 17, 537557, doi:10.1002/hyp.1113.

    • Search Google Scholar
    • Export Citation
  • Bromirski, P., , R. Flick, , and D. Cayan, 2003: Storminess variability along the California coast: 1858–2000. J. Climate, 16, 982993, doi:10.1175/1520-0442(2003)016<0982:SVATCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromirski, P., , A. Miller, , R. Flick, , and G. Auad, 2011: Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration. J. Geophys. Res., 116, C07005, doi:10.1029/2010JC006759.

    • Search Google Scholar
    • Export Citation
  • Cai, H., , H. H. G. Savenije, , and M. Toffolon, 2012: A new analytical framework for assessing the effect of sea-level rise and dredging on tidal damping in estuaries. J. Geophys. Res., 117, C09023, doi:10.1029/2012JC008000.

    • Search Google Scholar
    • Export Citation
  • California Department of Water Resources, cited 2011: An estimate of daily average delta outflow. [Available online at http://www.water.ca.gov/dayflow/.]

  • Carignan, K., , L. Taylor, , B. Eakins, , R. Caldwell, , D. Friday, , P. Grothe, , and E. Lim, 2011: Digital elevation models of central California and San Francisco Bay: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-52, 49 pp.

  • Chua, V., 2011: Three-dimensional unstructured-grid numerical simulations of hydrodynamics and scalar transport in San Francisco Bay. Ph.D. thesis, Stanford University, 164 pp.

  • Collins, J. N., , and R. M. Grossinger, 2004: Synthesis of scientific knowledge concerning estuarine landscapes and related habitats of the South Bay ecosystem. San Francisco Estuary Institute Tech. Rep. of the South Bay Salt Pond Restoration Project, 92 pp.

  • Delta Science Council, 2013: Bay Delta conservation plan draft environmental impact report. California Department of Water Resources, U.S. Bureau of Reclamation, U.S. Fish and Wildlife Service, and National Marine Fisheries Service Tech. Rep. App. 29A, 6 pp.

  • Douglas, B., 1997: Global sea rise: A redetermination. Surv. Geophys., 18, 279292, doi:10.1023/A:1006544227856.

  • Flick, R. E., , J. F. Murray, , and L. C. Ewing, 2003: Trends in United States tidal datum statistics and tide range. J. Waterw. Port Coastal Ocean Eng., 129, 155164, doi:10.1061/(ASCE)0733-950X(2003)129:4(155).

    • Search Google Scholar
    • Export Citation
  • Foxgrover, A. C., , and B. E. Jaffe, 2005: South San Francisco Bay 2004 topographic lidar survey: Data overview and preliminary quality assessment. USGS Open-File Rep. 2005-1284, 57 pp.

  • Foxgrover, A. C., , D. P. Finlayson, , and B. E. Jaffe, 2011: 2010 bathymetry and digital elevation model of Coyote Creek and Alviso Slough, South San Francisco Bay, California. USGS Open-File Rep. 2011-1315, 20 pp.

  • Foxgrover, A. C., , R. E. Smith, , and B. E. Jaffe, cited 2013: Suisun Bay and Delta bathymetry. USGS bathymetric dataset. [Available online at http://sfbay.wr.usgs.gov/sediment/delta/.]

  • Fringer, O. B., , M. Gerritsen, , and R. Street, 2006: An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modell., 14, 139173, doi:10.1016/j.ocemod.2006.03.006.

    • Search Google Scholar
    • Export Citation
  • Grinsted, A., , J. C. Moore, , and S. Jevrejeva, 2013: Projected Atlantic hurricane surge threat from rising temperatures. Proc. Natl. Acad. Sci. USA,110, 5369–5373, doi:10.1073/pnas.1209980110.

  • Gross, E. S., 1997: Numerical modeling of hydrodynamics and scalar transport in an estuary. Ph.D. thesis, Stanford University, 313 pp.

  • Holleman, R. C., 2013: Dispersion and tidal dynamics of channel-shoal basins. Ph.D. thesis, University of California, Berkeley, 123 pp.

  • Knowles, N., 2010: Potential inundation due to rising sea levels in the San Francisco Bay region. San Francisco Estuary Watershed Sci.,8, 19 pp. [Available online at http://escholarship.org/uc/item/8ck5h3qn.]

  • Kundu, P., , and I. Cohen, 2004: Fluid Mechanics. 3rd ed. Elsevier, 759 pp.

  • Lacy, J. R., , S. Gladding, , A. Brand, , A. Collignon, , and M. T. Stacey, 2014: Lateral baroclinic forcing enhances transport of sediment from shallows to channel in an estuary. Estuaries Coasts, doi:10.1007/s12237-013-9748-3, in press.

    • Search Google Scholar
    • Export Citation
  • Lanzoni, S., , and G. Seminara, 1998: On tide propagation in convergent estuaries. J. Geophys. Res., 103, 30 79330 812, doi:10.1029/1998JC900015.

    • Search Google Scholar
    • Export Citation
  • Li, C., , and A. Valle-Levinson, 1999: A two-dimensional analytic tidal model for a narrow estuary of arbitrary lateral depth variation: The intratidal motion. J. Geophys. Res., 104, 23 52523 543, doi:10.1029/1999JC900172.

    • Search Google Scholar
    • Export Citation
  • Li, C., , and J. O’Donnell, 2005: The effect of channel length on the residual circulation in tidally dominated channels. J. Phys. Oceanogr., 35, 18261840, doi:10.1175/JPO2804.1.

    • Search Google Scholar
    • Export Citation
  • MacWilliams, M., , F. G. Salcedo, , and E. Gross, 2008: San Francisco Bay-Delta UnTRIM model calibration report. California Department of Water Resources Tech. Rep., 309 pp.

  • NCALM, cited 2003: LiDAR data acquired by the National Center for Airborne Laser Mapping (NCALM). NCALM dataset, doi:10.5069/G9BG2KW9.

  • NOAA, cited 2012: 2009–2011 CA Coastal Conservancy Coastal Lidar Project: Hydro-flattened bare earth DEM. [Available online at http://csc.noaa.gov/dataviewer/webfiles/metadata/ca2010_coastal_dem.html.]

  • NOAA, cited 2013: NOAA tides and currents. [Available online at http://tidesandcurrents.noaa.gov/.]

  • Oey, L.-Y., , T. Ezer, , C. Hu, , and F. E. Muller-Karger, 2007: Baroclinic tidal flows and inundation processes in Cook Inlet, Alaska: Numerical modeling and satellite observations. Ocean Dyn., 57, 205221, doi:10.1007/s10236-007-0103-8.

    • Search Google Scholar
    • Export Citation
  • Parker, B., 1991: The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions (review). Tidal Hydrodynamics, Wiley, 237–268.

  • Parris, A., and et al. , 2012: Global sea level rise scenarios for the United States National Climate Assessment. NOAA Tech. Rep. OAR CPO-1, 33 pp.

  • Saramul, S., , and T. Ezer, 2010: Tidal-driven dynamics and mixing processes in a coastal ocean model with wetting and drying. Ocean Dyn., 60, 461478, doi:10.1007/s10236-009-0250-1.

    • Search Google Scholar
    • Export Citation
  • Savenije, H. H. G., 1992: Lagrangian solution of St. Venant’s equations for alluvial estuary. J. Hydraul. Eng., 118, 11531163, doi:10.1061/(ASCE)0733-9429(1992)118:8(1153).

    • Search Google Scholar
    • Export Citation
  • Savenije, H. H. G., , M. Toffolon, , J. Haas, , and E. J. M. Veling, 2008: Analytical description of tidal dynamics in convergent estuaries. J. Geophys. Res., 113, C10025, doi:10.1029/2007JC004408.

    • Search Google Scholar
    • Export Citation
  • Talke, S. A., , and D. A. Jay, 2013: Nineteenth century North American and Pacific tidal data: Lost or just forgotten? J. Coastal Res., 29, 118127, doi:10.2112/JCOASTRES-D-12-00181.1.

    • Search Google Scholar
    • Export Citation
  • van Rijn, L. C., 2011: Analytical and numerical analysis of tides and salinities in estuaries; Part I: Tidal wave propagation in convergent estuaries. Ocean Dyn., 61, 17191741, doi:10.1007/s10236-011-0453-0.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , O. B. Fringer, , S. N. Giddings, , and D. A. Fong, 2009: High-resolution simulations of a macrotidal estuary using SUNTANS. Ocean Modell., 28, 167192, doi:10.1016/j.ocemod.2008.08.008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 455 455 31
PDF Downloads 312 312 29

Coupling of Sea Level Rise, Tidal Amplification, and Inundation

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

With the global sea level rising, it is imperative to quantify how the dynamics of tidal estuaries and embayments will respond to increased depth and newly inundated perimeter regions. With increased depth comes a decrease in frictional effects in the basin interior and altered tidal amplification. Inundation due to higher sea level also causes an increase in planform area, tidal prism, and frictional effects in the newly inundated areas. To investigate the coupling between ocean forcing, tidal dynamics, and inundation, the authors employ a high-resolution hydrodynamic model of San Francisco Bay, California, comprising two basins with distinct tidal characteristics. Multiple shoreline scenarios are simulated, ranging from a leveed scenario, in which tidal flows are limited to present-day shorelines, to a simulation in which all topography is allowed to flood. Simulating increased mean sea level, while preserving original shorelines, produces additional tidal amplification. However, flooding of adjacent low-lying areas introduces frictional, intertidal regions that serve as energy sinks for the incident tidal wave. Net tidal amplification in most areas is predicted to be lower in the sea level rise scenarios. Tidal dynamics show a shift to a more progressive wave, dissipative environment with perimeter sloughs becoming major energy sinks. The standing wave southern reach of the bay couples more strongly back to the central portion of the bay, in contrast to the progressive wave northern reach of the bay. Generation of the M4 overtide is also found to vary between scenarios and is a nonnegligible contributor to net changes in high water elevation.

Current affiliation: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.

Corresponding author address: Rusty Holleman, 205 O’Brien Hall, University of California, Berkeley, Berkeley, CA 94720-1712. E-mail: holleman@berkeley.edu

Abstract

With the global sea level rising, it is imperative to quantify how the dynamics of tidal estuaries and embayments will respond to increased depth and newly inundated perimeter regions. With increased depth comes a decrease in frictional effects in the basin interior and altered tidal amplification. Inundation due to higher sea level also causes an increase in planform area, tidal prism, and frictional effects in the newly inundated areas. To investigate the coupling between ocean forcing, tidal dynamics, and inundation, the authors employ a high-resolution hydrodynamic model of San Francisco Bay, California, comprising two basins with distinct tidal characteristics. Multiple shoreline scenarios are simulated, ranging from a leveed scenario, in which tidal flows are limited to present-day shorelines, to a simulation in which all topography is allowed to flood. Simulating increased mean sea level, while preserving original shorelines, produces additional tidal amplification. However, flooding of adjacent low-lying areas introduces frictional, intertidal regions that serve as energy sinks for the incident tidal wave. Net tidal amplification in most areas is predicted to be lower in the sea level rise scenarios. Tidal dynamics show a shift to a more progressive wave, dissipative environment with perimeter sloughs becoming major energy sinks. The standing wave southern reach of the bay couples more strongly back to the central portion of the bay, in contrast to the progressive wave northern reach of the bay. Generation of the M4 overtide is also found to vary between scenarios and is a nonnegligible contributor to net changes in high water elevation.

Current affiliation: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.

Corresponding author address: Rusty Holleman, 205 O’Brien Hall, University of California, Berkeley, Berkeley, CA 94720-1712. E-mail: holleman@berkeley.edu
Save