• Andreas, E. L, , T. Horst, , A. Grachev, , P. Persson, , C. Fairall, , P. Guest, , and R. Jordan, 2010: Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Quart. J. Roy. Meteor. Soc., 136, 927943, doi:10.1002/qj.618.

    • Search Google Scholar
    • Export Citation
  • Arya, S. P. S., 1973: Contribution of form drag on pressure ridges to the air stress on Arctic ice. J. Geophys. Res., 78, 70927099, doi:10.1029/JC078i030p07092.

    • Search Google Scholar
    • Export Citation
  • Arya, S. P. S., 1975: A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J. Geophys. Res., 80, 34473454, doi:10.1029/JC080i024p03447.

    • Search Google Scholar
    • Export Citation
  • Birnbaum, G., , and C. Lüpkes, 2002: A new parameterization of surface drag in the marginal sea ice zone. Tellus, 54A, 107123, doi:10.1034/j.1600-0870.2002.00243.x.

    • Search Google Scholar
    • Export Citation
  • Claussen, M., 1990: Area-averaging of surface fluxes in a neutrally stratified, horizontally inhomogeneous atmospheric boundary layer. Atmos. Environ., 24A, 13491360, doi:10.1016/0960-1686(90)90041-K.

    • Search Google Scholar
    • Export Citation
  • Coon, M., , R. Kwok, , G. Levy, , M. Pruis, , H. Schreyer, , and D. Sulsky, 2007: Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate. J. Geophys. Res., 112, C11S90, doi:10.1029/2005JC003393.

    • Search Google Scholar
    • Export Citation
  • Eicken, H., , T. C. Grenfell, , D. K. Perovich, , J. A. Richter-Menge, , and K. Frey, 2004: Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res.,109, C08007, doi:10.1029/2003JC001989.

  • Farrell, S., and et al. , 2012: A first assessment of IceBridge snow and ice thickness data over Arctic sea ice. IEEE Trans. Geosci. Remote Sens.,50, 2098–2111, doi:10.1109/TGRS.2011.2170843.

  • Feltham, D., 2008: Sea ice rheology. Annu. Rev. Fluid Mech.,40, 91–112, doi:10.1146/annurev.fluid.40.111406.102151.

  • Ferry, N., , S. Masina, , A. Storto, , K. Haines, , M. Valdivieso, , B. Barnier, , and J.-M. Molines, 2011: Product user manual global-reanalysis-phys-001-004. MyOcean Tech. Rep., 30 pp.

  • Fetterer, F., , and N. Untersteiner, 1998: Observations of melt ponds on Arctic sea ice. J. Geophys. Res., 103 (C11), 24 82124 835, doi:10.1029/98JC02034.

    • Search Google Scholar
    • Export Citation
  • Fissel, D., , J. R. Marko, , and H. Melling, 2004: Upward looking ice profiler sonar instruments for ice thickness and topography measurements. Oceans ‘04: MTTS/IEEE Techno-Ocean ‘04,3, 1638–1643, doi:10.1109/OCEANS.2004.1406369.

  • Flato, G., , and W. Hibler III, 1995: Ridging and strength in modeling the thickness distribution of Arctic sea ice. J. Geophys. Res., 100 (C9), 18 611–18 626, doi:10.1029/95JC02091.

    • Search Google Scholar
    • Export Citation
  • Flocco, D., , and D. L. Feltham, 2007: A continuum model of melt pond evolution on Arctic sea ice. J. Geophys. Res.,112, C08016, doi:10.1029/2006JC003836.

  • Flocco, D., , D. L. Feltham, , and A. K. Turner, 2010: Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res.,115, C08012, doi:10.1029/2009JC005568.

  • Flocco, D., , D. Schroeder, , D. L. Feltham, , and E. C. Hunke, 2012: Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J. Geophys. Res.,117, C09032, doi:10.1029/2012JC008195.

  • Fowler, C., 2003: Polar Pathfinder daily 25 km EASE-grid sea ice motion vectors, version 2. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0116.html.]

  • Garbrecht, T., , C. Lüpkes, , E. Augstein, , and C. Wamser, 1999: Influence of a sea ice ridge on low-level airflow. J. Geophys. Res., 104 (D20), 24 49924 507, doi:10.1029/1999JD900488.

    • Search Google Scholar
    • Export Citation
  • Giles, K. A., , S. W. Laxon, , A. L. Ridout, , D. J. Wingham, , and S. Bacon, 2012: Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci.,5, 194–197, doi:10.1038/ngeo1379.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics.Vol. 30. Academic Press, 662 pp.

  • Gimbert, F., , N. C. Jourdain, , D. Marsan, , J. Weiss, , and B. Barnier, 2012: Recent mechanical weakening of the Arctic sea ice cover as revealed from larger inertial oscillations. J. Geophys. Res., 117, C00J12, doi:10.1029/2011JC007633.

    • Search Google Scholar
    • Export Citation
  • Guest, P. S., , and K. L. Davidson, 1991: The aerodynamic roughness of different types of sea ice. J. Geophys. Res., 96 (C3), 47094721, doi:10.1029/90JC02261.

    • Search Google Scholar
    • Export Citation
  • Haas, C., 2004: EM ice thickness measurements during GreenICE 2004 field campaign. AWI Tech Rep. GreenICE Deliverable D11, 24 pp.

  • Haas, C., , J. Lobach, , S. Hendricks, , L. Rabenstein, , and A. Pfaffling, 2009: Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system. J. Appl. Geophys., 67, 234241, doi:10.1016/j.jappgeo.2008.05.005.

    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., , and Y. T. Gjessing, 1988: Observations and model calculations of aerodynamic drag on sea ice in the Fram Strait. Tellus, 40A, 151161, doi:10.1111/j.1600-0870.1988.tb00413.x.

    • Search Google Scholar
    • Export Citation
  • Hartmann, J., , C. Kottmeier, , and C. Wamser, 1992: Radiation and Eddy Flux Experiment, 1991 (REFLEX 1). Berichte zur Polarforschung Series, Vol. 105, Alfred-Wegner-Institut, 72 pp.

  • Hibler, W., III, 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, doi:10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hibler, W., III, 1980: Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108 (12), 19431973, doi:10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., 2010: Thickness sensitivities in the CICE sea ice model. Ocean Modell., 34, 137149, doi:10.1016/j.ocemod.2010.05.004.

  • Hunke, E. C., , and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user’s manual version 4.1. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kauffman, B., , and W. Large, 2002: The CCSM coupler version 5.01: Combined user’s guide, source code reference, and scientific description. National Center for Atmospheric Research Tech. Rep., 47 pp.

  • Kottmeier, C., , J. Hartmann, , C. Wamser, , A. Bochert, , C. Freese, , and W. Cohrs, 1994: Radiation and Eddy Flux Experiment 1993 (REFLEX II). Berichte zur Polarforschung Series, Vol. 133, Alfred-Wegner-Institut, 62 pp.

  • Kwok, R., , and D. Sulsky, 2010: Arctic Ocean sea ice thickness and kinematics: Satellite retrievals and modeling. Oceanography, 23, 134143, doi:10.5670/oceanog.2010.11.

    • Search Google Scholar
    • Export Citation
  • Laxon, S. W., and et al. , 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett.,40, 732–737, doi:10.1002/grl.50193.

  • Le, H., , P. Moin, , and J. Kim, 1997: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech., 330, 349374, doi:10.1017/S0022112096003941.

    • Search Google Scholar
    • Export Citation
  • Leonardi, S., , P. Orlandi, , R. J. Smalley, , L. Djenidi, , and R. A. Antonia, 2003: Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech., 491, 229238, doi:10.1017/S0022112003005500.

    • Search Google Scholar
    • Export Citation
  • Leppäranta, M., 2005: The Drift of Sea Ice.Springer Verlag, 266 pp.

  • Lipscomb, W., , E. Hunke, , W. Maslowski, , and J. Jakacki, 2007: Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res., 112, C03S91, doi:10.1029/2005JC003355.

    • Search Google Scholar
    • Export Citation
  • López, S., , C. Lupkes, , and K. Schlunzen, 2005: The effect of different k-closures on the results of a micro-scale model for the flow in the obstacle layer. Meteor. Z., 14, 839848, doi:10.1127/0941-2948/2005/0084.

    • Search Google Scholar
    • Export Citation
  • Lu, P., , Z. Li, , B. Cheng, , and M. Leppranta, 2011: A parameterization of the ice–ocean drag coefficient. J. Geophys. Res.,116, C07019, doi:10.1029/2010JC006878.

  • Lüpkes, C., , and G. Birnbaum, 2005: Surface drag in the Arctic marginal sea-ice zone: A comparison of different parameterisation concepts. Bound.-Layer Meteor., 117, 179211, doi:10.1007/s10546-005-1445-8.

    • Search Google Scholar
    • Export Citation
  • Lüpkes, C., , V. M. Gryanik, , J. Hartmann, , and E. L Andreas, 2012: A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J. Geophys. Res.,117, D13112, doi:10.1029/2012JD017630.

  • Lüpkes, C., , V. M. Gryanik, , A. Rösel, , G. Birnbaum, , and L. Kaleschke, 2013: Effect of sea ice morphology during Arctic summer on atmospheric drag coefficients used in climate models. Geophys. Res. Lett.,40, 446–451, doi:10.1002/grl.50081.

  • Mai, S., , C. Wamser, , and C. Kottmeier, 1996: Geometric and aerodynamic roughness of sea ice. Bound.-Layer Meteor., 77, 233248, doi:10.1007/BF00123526.

    • Search Google Scholar
    • Export Citation
  • Martin, T., 2007: Arctic sea ice dynamics: Drift and ridging in numerical models and observations. Ph.D. thesis, Universität Bremen, 240 pp.

  • Martin, T., , and R. Gerdes, 2007: Sea ice drift variability in Arctic Ocean Model Intercomparison Project models and observations. J. Geophys. Res., 112, C04S10, doi:10.1029/2006JC003617.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2008: Air–Ice–Ocean Interaction.Springer, 216 pp.

  • McPhee, M. G., 2012: Advances in understanding ice–ocean stress during and since AIDJEX. Cold Reg. Sci. Technol., 76–77, 2436, doi:10.1016/j.coldregions.2011.05.001.

    • Search Google Scholar
    • Export Citation
  • Melling, H., , P. H. Johnston, , and D. A. Riedel, 1995: Measurements of the underside topography of sea ice by moored subsea sonar. J. Atmos. Oceanic Technol., 12, 589602, doi:10.1175/1520-0426(1995)012<0589:MOTUTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nägeli, W., 1946: Further investigation of the wind conditions in areas with shelterbelts. Mitt. Schweiz. Anst. Fortstl.,24, 659–737.

  • Pite, H. D., , D. R. Topham, , and B. J. van Hardenberg, 1995: Laboratory measurements of the drag force on a family of two-dimensional ice keel models in a two-layer flow. J. Phys. Oceanogr., 25, 30083031, doi:10.1175/1520-0485(1995)025<3008:LMOTDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plate, E., , and C. Lin, 1965: The velocity field downstream from a two-dimensional model hill. Part 2. Tech. Rep. DA AMC-36-039-63-G7, 63 pp.

  • Rampal, P., , J. Weiss, , C. Dubois, , and J.-M. Campin, 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline. J. Geophys. Res., 116, C00D07, doi:10.1029/2011JC007110.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D., 1975: The energetics of the plastic deformation of pack ice by ridging. J. Geophys. Res., 80 (33), 4514–4519, doi:10.1029/JC080i033p04514.

    • Search Google Scholar
    • Export Citation
  • Schröder, D., , T. Vihma, , A. Kerber, , and B. Brümmer, 2003: On the parameterization of turbulent surface fluxes over heterogeneous sea ice surfaces. J. Geophys. Res., 108, 3195, doi:10.1029/2002JC001385.

    • Search Google Scholar
    • Export Citation
  • Steele, M., , J. H. Morison, , and N. Untersteiner, 1989: The partition of air–ice–ocean momentum exchange as a function of ice concentration, roe size, and draft. J. Geophys. Res., 94 (C9), 12 73912 750, doi:10.1029/JC094iC09p12739.

    • Search Google Scholar
    • Export Citation
  • Steiner, N., , M. Harder, , and P. Lemke, 1999: Sea-ice roughness and drag coefficients in a dynamic thermodynamic sea-ice model for the arctic. Tellus, 51A, 964978, doi:10.1034/j.1600-0870.1999.00029.x.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , M. Serreze, , M. Holland, , J. Kay, , J. Malanik, , and A. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change,110, 1005–1027, doi:10.1007/s10584-011-0101-1.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology.Vol. 13. Springer, 666 pp.

  • Thorndike, A., , D. Rothrock, , G. Maykut, , and R. Colony, 1975: The thickness distribution of sea ice. J. Geophys. Res., 80 (33), 4501–4513, doi:10.1029/JC080i033p04501.

    • Search Google Scholar
    • Export Citation
  • Tremblay, L., , and L. Mysak, 1997: Modeling sea ice as a granular material, including the dilatancy effect. J. Phys. Oceanogr., 27, 23422360, doi:10.1175/1520-0485(1997)027<2342:MSIAAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsamados, M., , D. L. Feltham, , and A. V. Wilchinsky, 2013: Impact of a new anisotropic rheology on simulations of Arctic sea ice. J. Geophys. Res. Oceans,118, 91–107, doi:10.1029/2012JC007990.

  • Vihma, T., 1995: Subgrid parameterization of surface heat and momentum fluxes over polar oceans. J. Geophys. Res., 100 (C11), 22 62522 646, doi:10.1029/95JC02498.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., , and T. Davy, 1986: On the spacing and draft distributions for pressure ridge keels. J. Geophys. Res., 91 (C9), 10 69710 708, doi:10.1029/JC091iC09p10697.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., , J. P. Wilkinson, , and A. Kaletzky, 2004: Sidescan sonar imagery of the winter marginal ice zone obtained from an AUV. J. Atmos. Oceanic Technol., 21, 14621470, doi:10.1175/1520-0426(2004)021<1462:SSIOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., , and D. Marsan, 2004: Scale properties of sea ice deformation and fracturing. C. R. Phys., 5, 735751, doi:10.1016/j.crhy.2004.09.005.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, doi:10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 371 371 34
PDF Downloads 332 332 26

Impact of Variable Atmospheric and Oceanic Form Drag on Simulations of Arctic Sea Ice

View More View Less
  • 1 Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 2 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 3 Goddard Earth Science Technology and Research Program, Mergan State University, Baltimore, Maryland
  • | 4 Centre for Polar Observation and Modelling, University College London, London, United Kingdom
  • | 5 National Oceanography Center, University of Southampton, Southampton, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Over Arctic sea ice, pressure ridges and floe and melt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed.

Supplemental information related to this paper is available at the Journals Online website.

Deceased.

Corresponding author address: Michel Tsamados, Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, RG6 6BB, United Kingdom. E-mail: m.c.tsamados@rdg.ac.uk

Abstract

Over Arctic sea ice, pressure ridges and floe and melt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed.

Supplemental information related to this paper is available at the Journals Online website.

Deceased.

Corresponding author address: Michel Tsamados, Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, RG6 6BB, United Kingdom. E-mail: m.c.tsamados@rdg.ac.uk

Supplementary Materials

    • Supplemental Materials (TEX 9.95 KB)
    • Supplemental Materials (PDF 106.47 KB)
Save