• Boening, C., , T. Lee, , and V. Zlotnicki, 2011: A record-high ocean bottom pressure in the South Pacific observed by GRACE. Geophys. Res. Lett.,38, L04602, doi:10.1029/2010GL046013.

  • Chambers, D. P., 2006: Evaluation of new GRACE time-variable gravity data over the ocean. Geophys. Res. Lett.,33, L17603, doi:10.1029/2006GL027296.

  • Chambers, D. P., 2011: ENSO-correlated fluctuations in ocean bottom pressure and wind-stress curl in the North Pacific. Ocean Sci., 7, 685692, doi:10.5194/os-7-685-2011.

    • Search Google Scholar
    • Export Citation
  • Cheng, X., , L. Li, , Y. Du, , J. Wang, , and R.-X. Huang, 2013: Mass-induced sea level change in the northwestern North Pacific and its contribution to total sea level change. Geophys. Res. Lett.,40, 3975–3980, doi:10.1002/grl.50748.

  • Fu, L.-L., 2003: Wind-forced intraseasonal sea level variability of the extratropical ocean. J. Phys. Oceanogr., 33, 436449, doi:10.1175/1520-0485(2003)033<0436:WFISLV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., , and R. D. Smith, 1996: Global ocean circulation from satellite altimetry and high-resolution computer simulation. Bull. Amer. Meteor. Soc.,77, 2625–2636, doi:10.1175/1520-0477(1996)077<2625:GOCFSA>2.0.CO;2.

  • Fukumori, I., , R. Raghunath, , and L.-L. Fu, 1998: Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling study. J. Geophys. Res. Oceans,103, 5493–5512, doi:10.1029/97JC02907.

  • Gill, A., , and P. Niiler, 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res. Oceanogr. Abstr., 20, 141177, doi:10.1016/0011-7471(73)90049-1.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 2008: A form of potential vorticity equation for depth-integrated flow with a free surface. J. Phys. Oceanogr., 38, 11311136, doi:10.1175/2007JPO3809.1.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., , P. L. Woodworth, , M. P. Meredith, , V. Stepanov, , T. Whitworth III, , and A. Pyne, 2003: Coherence of Antarctic sea levels, Southern Hemisphere annular mode, and flow through Drake Passage. Geophys. Res. Lett., 30, 1464, doi:10.1029/2003GL017240.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., , V. N. Stepanov, , L.-L. Fu, , B. Barnier, , and G. W. Hargreaves, 2007: Three forms of variability in Argentine Basin ocean bottom pressure. J. Geophys. Res.,112, C01011, doi:10.1029/2006JC003679.

  • Jayne, S. R., , J. M. Wahr, , and F. O. Bryan, 2003: Observing ocean heat content using satellite gravity and altimetry. J. Geophys. Res., 108, 3031, doi:10.1029/2002JC001619.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , and D. P. Chambers, 2013: Ocean bottom pressure seasonal cycles and decadal trends from GRACE release-05: Ocean circulation implications. J. Geophys. Res. Oceans,118, 4228–4240, doi:10.1002/jgrc.20307.

  • Koblinsky, C. J., 1990: The global distribution of f/H and the barotropic response of the ocean. J. Geophys. Res.,95, 3213–3218, doi:10.1029/JC095iC03p03213.

  • Köhl, A., , F. Siegismund, , and D. Stammer, 2012: Impact of assimilating bottom pressure anomalies from GRACE on ocean circulation estimates. J. Geophys. Res.,117, C04032, doi:10.1029/2011JC007623.

  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., , K. J. Quinn, , and R. M. Ponte, 2013: Satellite-derived interannual ocean bottom pressure variability and its relation to sea level. Geophys. Res. Lett., 40, 31063110, doi:10.1002/grl.50549.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 1999: A preliminary model study of the large-scale seasonal cycle in bottom pressure over the global ocean. J. Geophys. Res., 104, 12891300, doi:10.1029/1998JC900028.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., , and P. Gaspar, 1999: Regional analysis of the inverted barometer effect over the global ocean using TOPEX/POSEIDON data and model results. J. Geophys. Res.,104, 15 587–15 601, doi:10.1029/1999JC900113.

  • Quinn, K. J., , and R. M. Ponte, 2008: Estimating weights for the use of time-dependent gravity recovery and climate experiment data in constraining ocean models. J. Geophys. Res.,113, C12013, doi:10.1029/2008JC004903.

  • Quinn, K. J., , and R. M. Ponte, 2012: High frequency barotropic ocean variability observed by GRACE and satellite altimetry. Geophys. Res. Lett.,39, L07603, doi:10.1029/2012GL051301.

  • Siegismund, F., , V. Romanova, , A. Köhl, , and D. Stammer, 2011: Ocean bottom pressure variations estimated from gravity, nonsteric sea surface height and hydrodynamic model simulations. J. Geophys. Res.,116, C07021, doi:10.1029/2010JC006727.

  • Song, Y. T., , and V. Zlotnicki, 2008: Subpolar ocean bottom pressure oscillation and its links to the tropical ENSO. Int. J. Remote Sens., 29, 60916107, doi:10.1080/01431160802175538.

    • Search Google Scholar
    • Export Citation
  • Speer, K., , and G. Forget, 2013: Global distribution and formation of mode waters. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, 2nd ed. G. Siedler et al., Eds., Elsevier, 211–224.

  • Swenson, S., , and J. Wahr, 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett.,33, L08402, doi:10.1029/2005GL025285.

  • Swenson, S., , D. Chambers, , and J. Wahr, 2008: Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res.,113, B08410, doi:10.1029/2007JB005338.

  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate,13, 1000–1016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

  • Tsimplis, M. N., and et al. , 2013: The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Oceans,118, 944–952, doi:10.1002/jgrc.20078.

  • Vinogradova, N. T., , R. M. Ponte, , and D. Stammer, 2007: Relation between sea level and bottom pressure and the vertical dependence of oceanic variability. Geophys. Res. Lett.,34, L03608, doi:10.1029/2006GL028588.

  • Vivier, F., , K. A. Kelly, , and M. Harismendy, 2005: Causes of large-scale sea level variations in the Southern Ocean: Analyses of sea level and a barotropic model. J. Geophys. Res.,110, C09014, doi:10.1029/2004JC002773.

  • Wahr, J., , M. Molenaar, , and F. Bryan, 1998: Time variability of the earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res.,103, 30 205–30 229, doi:10.1029/98JB02844.

  • Webb, D. J., , and B. A. de Cuevas, 2002a: An ocean resonance in the southeast Pacific. Geophys. Res. Lett.,29 (8), doi:10.1029/2001GL014259.

  • Webb, D. J., , and B. A. de Cuevas, 2002b: An ocean resonance in the Indian sector of the Southern Ocean. Geophys. Res. Lett.,29 (14), doi:10.1029/2002GL015270.

  • Webb, D. J., , and B. A. de Cuevas, 2003: The region of large sea surface height variability in the southeast Pacific Ocean. J. Phys. Oceanogr., 33, 10441056, doi:10.1175/1520-0485(2003)033<1044:TROLSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., 2010: An almost-free barotropic mode in the Australian–Antarctic Basin. Geophys. Res. Lett.,37, L10602, doi:10.1029/2010GL042657.

  • Weijer, W., , F. Vivier, , S. T. Gille, , and H. A. Dijkstra, 2007: Multiple oscillatory modes of the Argentine Basin. Part I: Statistical analysis. J. Phys. Oceanogr.,37, 2855–2868, doi:10.1175/2007JPO3527.1.

  • Wunsch, C., , and P. Heimbach, 2007: Practical global ocean state estimation. Physica D, 230, 197208, doi:10.1016/j.physd.2006.09.040.

  • Wunsch, C., , and P. Heimbach, 2013a: Dynamically and kinematically consistent global ocean circulation and ice state estimates. Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed. G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Elsevier, 553–579, doi:10.1016/B978-0-12-391851-2.00021-0.

  • Wunsch, C., , and P. Heimbach, 2013b: Two decades of the Atlantic meridional overturning circulation: Anatomy, variations, extremes, prediction, and overcoming its limitations. J. Climate, 26, 71677186, doi:10.1175/JCLI-D-12-00478.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , P. Heimbach, , R. M. Ponte, , and I. Fukumori, 2009: The global general circulation of the ocean estimated by the ECCO-Consortium. Oceanography,22, 88–103, doi:10.5670/oceanog.2009.41.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 65 5
PDF Downloads 54 54 3

Interannual Bottom Pressure Signals in the Australian–Antarctic and Bellingshausen Basins

View More View Less
  • 1 Atmospheric and Environmental Research, Inc., Lexington, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Analyses of large-scale (>750 km) ocean bottom pressure pb fields, derived from the Gravity Recovery and Climate Experiment (GRACE) and from an Estimating the Circulation & Climate of the Ocean (ECCO) state estimate, reveal enhanced interannual variability, partially connected to the Antarctic Oscillation, in regions of the Australian–Antarctic Basin and the Bellingshausen Basin, with pb magnitudes comparable to those of sea level and good correlation between the GRACE and ECCO pb series. Consistent with the theory of Gill and Niiler, the patterns of stronger pb variability are partly related to enhanced local wind curl forcing and weakened gradients in H/f, where H is ocean depth and f is the Coriolis parameter. Despite weaker H/f gradients, motions against them are sufficiently strong to play a role in balancing the local wind input. Topographic effects are as or more important than changes in f. Additionally, and contrary to the dominance of barotropic processes at subannual time scales, baroclinic effects are not negligible when balancing wind input at periods of a few years. Results highlight the emerging capability to accurately observe and estimate interannual changes in large-scale pb over the Southern Ocean, with implications for the interpretation of low-frequency variability in sea level in terms of steric height and heat content.

Corresponding author address: Rui M. Ponte, Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421. E-mail: rponte@aer.com

Abstract

Analyses of large-scale (>750 km) ocean bottom pressure pb fields, derived from the Gravity Recovery and Climate Experiment (GRACE) and from an Estimating the Circulation & Climate of the Ocean (ECCO) state estimate, reveal enhanced interannual variability, partially connected to the Antarctic Oscillation, in regions of the Australian–Antarctic Basin and the Bellingshausen Basin, with pb magnitudes comparable to those of sea level and good correlation between the GRACE and ECCO pb series. Consistent with the theory of Gill and Niiler, the patterns of stronger pb variability are partly related to enhanced local wind curl forcing and weakened gradients in H/f, where H is ocean depth and f is the Coriolis parameter. Despite weaker H/f gradients, motions against them are sufficiently strong to play a role in balancing the local wind input. Topographic effects are as or more important than changes in f. Additionally, and contrary to the dominance of barotropic processes at subannual time scales, baroclinic effects are not negligible when balancing wind input at periods of a few years. Results highlight the emerging capability to accurately observe and estimate interannual changes in large-scale pb over the Southern Ocean, with implications for the interpretation of low-frequency variability in sea level in terms of steric height and heat content.

Corresponding author address: Rui M. Ponte, Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421. E-mail: rponte@aer.com
Save