Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate

Amy F. Waterhouse * Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Amy F. Waterhouse in
Current site
Google Scholar
PubMed
Close
,
Jennifer A. MacKinnon * Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Jennifer A. MacKinnon in
Current site
Google Scholar
PubMed
Close
,
Jonathan D. Nash College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Jonathan D. Nash in
Current site
Google Scholar
PubMed
Close
,
Matthew H. Alford Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
,
Eric Kunze Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Eric Kunze in
Current site
Google Scholar
PubMed
Close
,
Harper L. Simmons University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Harper L. Simmons in
Current site
Google Scholar
PubMed
Close
,
Kurt L. Polzin Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Kurt L. Polzin in
Current site
Google Scholar
PubMed
Close
,
Louis C. St. Laurent Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Louis C. St. Laurent in
Current site
Google Scholar
PubMed
Close
,
Oliver M. Sun Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Oliver M. Sun in
Current site
Google Scholar
PubMed
Close
,
Robert Pinkel * Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Robert Pinkel in
Current site
Google Scholar
PubMed
Close
,
Lynne D. Talley * Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Lynne D. Talley in
Current site
Google Scholar
PubMed
Close
,
Caitlin B. Whalen * Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Caitlin B. Whalen in
Current site
Google Scholar
PubMed
Close
,
Tycho N. Huussen * Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Tycho N. Huussen in
Current site
Google Scholar
PubMed
Close
,
Glenn S. Carter ** Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Glenn S. Carter in
Current site
Google Scholar
PubMed
Close
,
Ilker Fer Geophysical Institute, University of Bergen, Bergen, Norway

Search for other papers by Ilker Fer in
Current site
Google Scholar
PubMed
Close
,
Stephanie Waterman Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia

Search for other papers by Stephanie Waterman in
Current site
Google Scholar
PubMed
Close
,
Alberto C. Naveira Garabato National Oceanography Centre, University of Southampton, Southampton, United Kingdom

Search for other papers by Alberto C. Naveira Garabato in
Current site
Google Scholar
PubMed
Close
,
Thomas B. Sanford Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Thomas B. Sanford in
Current site
Google Scholar
PubMed
Close
, and
Craig M. Lee Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Craig M. Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10−4) m2 s−1 and above 1000-m depth is O(10−5) m2 s−1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.

Current affiliation: Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australia.

Corresponding author address: A. F. Waterhouse, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037. E-mail: awaterhouse@ucsd.edu

Abstract

The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10−4) m2 s−1 and above 1000-m depth is O(10−5) m2 s−1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.

Current affiliation: Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australia.

Corresponding author address: A. F. Waterhouse, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037. E-mail: awaterhouse@ucsd.edu
Save
  • Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, doi:10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, doi:10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2010: Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment. J. Phys. Oceanogr., 40, 26432660, doi:10.1175/2010JPO4502.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. C. Gregg, and M. Merrifield, 2006: Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36, 9971018, doi:10.1175/JPO2877.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, doi:10.1175/JPO-D-11-073.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909, doi:10.1175/JPO-D-11-092.1.

    • Search Google Scholar
    • Export Citation
  • Althaus, A., E. Kunze, and T. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33, 15101527, doi:10.1175/1520-0485(2003)033<1510:ITRFME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res. I, 29, 307338, doi:10.1016/0198-0149(82)90098-X.

  • Bell, T. H., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, doi:10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Bray, N., and N. P. Fofonoff, 1981: Available potential-energy for MODE eddies. J. Phys. Oceanogr., 11, 3047, doi:10.1175/1520-0485(1981)011<0030:APEFME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carter, G., and M. Gregg, 2002: Intense, variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 31453165, doi:10.1175/1520-0485(2002)032<3145:IVMNTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crawford, W. R., 1986: A comparison of length scales and decay times of turbulence in stably stratified flows. J. Phys. Oceanogr., 16, 18471854, doi:10.1175/1520-0485(1986)016<1847:ACOLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, doi:10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1995: Upper-ocean inertial currents forced by a strong storm. III: Interaction of inertial currents and mesoscale eddies. J. Phys. Oceanogr., 25, 29532958, doi:10.1175/1520-0485(1995)025<2953:UOICFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and M. D. Morehead, 1991: Internal waves and velocity fine structure in the Arctic Ocean. J. Geophys. Res., 96, 12 725–12 738, doi:10.1029/91JC01071.

    • Search Google Scholar
    • Export Citation
  • Decloedt, T., and D. S. Luther, 2010: On a simple empirical parameterization of topography-catalyzed diapycnal mixing in the abyssal ocean. J. Phys. Oceanogr., 40, 487508, doi:10.1175/2009JPO4275.1.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, doi:10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Dohan, K., and R. E. Davis, 2011: Mixing in the transition layer during two storm events. J. Phys. Oceanogr., 41, 4266, doi:10.1175/2010JPO4253.1.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., P. F. Worcester, and M. A. Dzieciuch, 2011: On the predictability of mode-1 internal tides. Deep-Sea Res. I, 58, 677698, doi:10.1016/j.dsr.2011.04.002.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, doi:10.1038/35015531.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106, 22 47522 502, doi:10.1029/2000JC000699.

    • Search Google Scholar
    • Export Citation
  • Fer, I., G. Voet, K. S. Seim, B. Rudels, and K. Latarius, 2010: Intense mixing of the Faroe Bank Channel overflow. Geophys. Res. Lett.,37, L02604, doi:10.1029/2009GL041924.

  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. L. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 19291945, doi:10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res.,113, C09034, doi:10.1029/2008JC004768.

  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457, doi:10.1038/35044048.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, doi:10.1146/annurev.fluid.39.050905.110227.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V. V., and K. P. Koltermann, 2004: WOCE global hydrographic climatology: A technical report. Bundesamt Seeschifffahrt Hydrogr., 35, 152.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Gregg, M. C., 1998: Estimation and geography of diapycnal mixing in the stratified ocean. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Amer. Geophys. Union, 305–338.

  • Gregg, M. C., 1999: Uncertainties and limitations in measuring ϵ and χ. J. Atmos. Oceanic Technol., 16, 14831490, doi:10.1175/1520-0426(1999)016<1483:UALIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and T. B. Sanford, 1988: The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res., 93, 12 38112 392, doi:10.1029/JC093iC10p12381.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and E. Kunze, 1991: Shear and strain in Santa Monica basin. J. Geophys. Res., 96, 16 70916 719, doi:10.1029/91JC01385.

  • Gregg, M. C., E. A. D’Asaro, T. J. Shay, and N. Larson, 1986: Observations of persistent mixing and near-inertial internal waves. J. Phys. Oceanogr., 16, 856885, doi:10.1175/1520-0485(1986)016<0856:OOPMAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Hebert, D., and J. N. Moum, 1994: Decay of a near-inertial wave. J. Phys. Oceanogr., 24, 23342351, doi:10.1175/1520-0485(1994)024<2334:DOANIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., A. C. Naveira Garabato, and P. D. Stevens, 2002: High mixing rates in the abyssal Southern Ocean. Nature, 415, 10111014, doi:10.1038/4151011a.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and T. E. Rosmond, 1991: The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon. Wea. Rev., 119, 17861815, doi:10.1175/1520-0493(1991)119<1786:TDOTNO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holte, J., and L. Talley, 2009: A new algorithm for finding mixed layer depths with applications to Argo data and subantarctic mode water formation. J. Atmos. Oceanic Technol., 26, 19201939, doi:10.1175/2009JTECHO543.1.

    • Search Google Scholar
    • Export Citation
  • Hooper, J. A., 2011: Dissipation processes in the tongue of the ocean. M.S. thesis, Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, 38 pp.

  • Huussen, T. N., A. C. Naveira-Garabato, H. L. Bryden, and E. L. McDonagh, 2012: Is the deep Indian Ocean MOC sustained by breaking internal waves? J. Geophys. Res., 117, C08024, doi:10.1029/2012JC008236.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., Y. Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi:10.1029/2005GL023289.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, N. J. Norton, S. R. Jayne, M. H. Alford, and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, doi:10.1175/JCLI-D-12-00181.1.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., M. A. Merrifield, and P. E. Holloway, 2003: Internal tide scattering at the Line Islands Ridge. J. Geophys. Res., 108, 3365, doi:10.1029/2003JC001844.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, and E. Kunze, 2010: Internal-tide energy over topography. J. Geophys. Res., 115, C06014, doi:10.1029/2009JC005618.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, doi:10.1175/JPO2885.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, doi:10.1175/2007JPO3728.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and T. B. Sanford, 1996: Abyssal mixing: Where it is not. J. Phys. Oceanogr., 26, 22862296, doi:10.1175/1520-0485(1996)026<2286:AMWIIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and J. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27, 26632693, doi:10.1175/1520-0485(1997)027<2663:TDVDSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and S. G. Llewellyn-Smith, 2004: The role of small-scale topography in turbulent mixing of the global ocean. Oceanography, 17, 5564, doi:10.5670/oceanog.2004.67.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910927, doi:10.1175/JPO-D-11-075.1.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., G. Egbert, J. S. Allen, R. N. Miller, S. Y. Erofeeva, and P. M. Kosro, 2003: The M2 internal tide off Oregon: Inferences from data assimilation. J. Phys. Oceanogr., 33, 17331757, doi:10.1175/2397.1.

    • Search Google Scholar
    • Export Citation
  • Large, W., and G. B. Crawford, 1995: Observations and simulations of upper-ocean response to wind events during the Ocean Storms Experiment. J. Phys. Oceanogr., 25, 28312852, doi:10.1175/1520-0485(1995)025<2831:OASOUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. Montgomery, K. L. Polzin, L. C. St. Laurent, R. Schmitt, and J. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, doi:10.1038/35003164.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., L. C. St. Laurent, J. Girton, and J. M. Toole, 2011: Diapycnal mixing in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 41, 241246, doi:10.1175/2010JPO4557.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C. M., E. Kunze, T. B. Sanford, J. D. Nash, M. A. Merrifield, and P. E. Holloway, 2006: Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11651183, doi:10.1175/JPO2886.1.

    • Search Google Scholar
    • Export Citation
  • Legg, S., 2014: Scattering of low-mode internal waves at finite isolated topography. J. Phys. Oceanogr., 44, 359383, doi:10.1175/JPO-D-12-0241.1.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., C. A. Paulson, and J. H. Morison, 1987: Observations of internal gravity waves under the Arctic pack ice. J. Geophys. Res., 92, 779–782, doi:10.1029/JC092iC01p00779.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., 1988: Turbulent mixing at the Pacific Subtropical Front. J. Phys. Oceanogr., 18, 17611774, doi:10.1175/1520-0485(1988)018<1761:TMATPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and R. Reid, 1984: On the production and dissipation of mechanical energy in the ocean. J. Geophys. Res., 89, 34393445, doi:10.1029/JC089iC03p03439.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and T. R. Osborn, 1985: Turbulence measurements in a submarine canyon. Cont. Shelf Res., 4, 681698, doi:10.1016/0278-4343(85)90036-6.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and T. R. Osborn, 1986: The dissipation of kinetic energy in a warm-core ring. J. Geophys. Res., 91, 803818, doi:10.1029/JC091iC01p00803.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., W. R. Crawford, and T. R. Osborn, 1983: Turbulent dissipation over the continental slope off Vancouver Island. J. Phys. Oceanogr., 13, 18091818, doi:10.1175/1520-0485(1983)013<1809:TDOTCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., D. Huang, D. Newman, and J. Box, 1997: Turbulence measurement with a moored instrument. J. Atmos. Oceanic Technol., 14, 143161, doi:10.1175/1520-0426(1997)014<0143:TMWAMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Macdonald, A. M., S. Mecking, P. E. Robbins, J. M. Toole, G. C. Johnson, L. Talley, M. Cook, and S. E. Wijffels, 2009: The WOCE-era 3-D Pacific Ocean circulation and heat budget. Prog. Oceanogr., 82, 281325, doi:10.1016/j.pocean.2009.08.002.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, R. Pinkel, J. M. Klymak, and Z. Zhao, 2013a: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, doi:10.1175/JPO-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., L. C. St. Laurent, and A. C. Naveira Garabato, 2013b: Dianeutral transport processes in the ocean interior. Ocean Circulation and Climate a 21st Century Perspective, G. Siedler et al., Eds., Academic Press, 159–183.

  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794, doi:10.1175/2011JPO4581.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. L. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and M. Nikurashin, 2014: Sensitivity of the ocean state to lee wave–driven mixing. J. Phys. Oceanogr., 44, 900921, doi:10.1175/JPO-D-13-072.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996a: Efficiency of mixing in the main thermocline. J. Geophys. Res., 101, 12 05712 069, doi:10.1029/96JC00508.

  • Moum, J. N., 1996b: Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101, 14 09514 109, doi:10.1029/96JC00507.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and T. R. Osborn, 1986: Mixing in the main thermocline. J. Phys. Oceanogr., 16, 12501259, doi:10.1175/1520-0485(1986)016<1250:MITMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., T. R. Osborn, and W. R. Crawford, 1986: Pacific equatorial turbulence: Revisited. J. Phys. Oceanogr., 16, 15161522, doi:10.1175/1520-0485(1986)016<1516:PETR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. R. Caldwell, J. D. Nash, and G. D. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 21132130, doi:10.1175/1520-0485(2002)032<2113:OOBMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R. C. Lien, A. Perlin, J. D. Nash, M. C. Gregg, and P. J. Wiles, 2009: Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, doi:10.1038/ngeo657.

    • Search Google Scholar
    • Export Citation
  • Müller, P., and D. J. Olbers, 1975: On the dynamics of internal waves in the deep ocean. J. Geophys. Res., 80, 38483860, doi:10.1029/JC080i027p03848.

    • Search Google Scholar
    • Export Citation
  • Müller, P., and N. Xu, 1992: Scattering of oceanic internal gravity waves off random bottom topography. J. Phys. Oceanogr., 22, 474488, doi:10.1175/1520-0485(1992)022<0474:SOOIGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Munk, W. H., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. Toole, and R. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, doi:10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, E. Kunze, K. I. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Nasmyth, P. W., 1970: Oceanic turbulence. Ph.D. thesis, University of British Columbia, 69 pp.

  • Naveira Garabato, A. C., D. P. Stevens, and K. J. Heywood, 2003: Water mass conversion, fluxes, and mixing in the Scotia Sea diagnosed by an inverse model. J. Phys. Oceanogr., 33, 25652587, doi:10.1175/1520-0485(2003)033<2565:WMCFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett.,38, L08610, doi:10.1029/2011GL046576.

  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructur