• Abernathey, R. P., , and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res., 118, 901916, doi:10.1002/jgrc.20066.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., 2013: Divergent eddy heat fluxes in the Kuroshio Extension at 143°–149°E. Part II: Spatiotemporal variability. J. Phys. Oceanogr., 43, 24162431, doi:10.1175/JPO-D-13-061.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., , and D. R. Watts, 2013: Divergent eddy heat fluxes in the Kuroshio Extension at 143°–149°E. Part I: Mean structure. J. Phys. Oceanogr., 43, 15331550, doi:10.1175/JPO-D-12-0221.1.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., , and D. R. Watts, 1996: Eddy-mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26, 21072131, doi:10.1175/1520-0485(1996)026<2107:EFIITG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and Coauthors, 2013: Formation and erosion of the seasonal thermocline in the Kuroshio Extension recirculation gyre. Deep-Sea Res. II, 85, 6274, doi:10.1016/j.dsr2.2012.07.018.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., , and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects.International Geophysics Series, Vol. 101, Academic Press, 828 pp.

  • Deremble, B., , and W. Dewar, 2013: Volume and potential vorticity budgets of Eighteen Degree Water. J. Phys. Oceanogr., 43, 23092321, doi:10.1175/JPO-D-13-052.1.

    • Search Google Scholar
    • Export Citation
  • Dewar, W., , R. Samelson, , and G. Vallis, 2005: The ventilated pool: A model of subtropical mode water. J. Phys. Oceanogr., 35, 137150, doi:10.1175/JPO-2681.1.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., , D. R. Watts, , K. L. Tracey, , M. Wimbush, , and J.-H. Park, 2008: Program studies the Kuroshio Extension. Eos, Trans. Amer. Geophys. Union, 89, 161162, doi:10.1029/2008EO170002.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., , D. R. Watts, , K. L. Tracey, , A. D. Greene, , and M. Kennelly, 2010: Mapping circulation in the Kuroshio Extension with an array of current and pressure recording inverted echo sounders. J. Atmos. Oceanic Technol., 27, 507527, doi:10.1175/2009JTECHO686.1.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , R. J. Greatbatch, , and J. Willebrand, 2007: A diagnosis of thickness fluxes in an eddy-resolving model. J. Phys. Oceanogr., 37, 727742, doi:10.1175/JPO2987.1.

    • Search Google Scholar
    • Export Citation
  • Flierl, G., , and J. C. McWilliams, 1977: Sampling requirements for measuring moments of eddy variability. J. Mar. Res., 35, 797820.

  • Fox-Kemper, B., , R. Lumpkin, , and F. O. Bryan, 2013: Lateral transport in the ocean interior. Ocean Circulation and Climate: A 21st Century Perspective, International Geophysics Series, Vol. 103, Elsevier, 185–210.

  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulating models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greene, A. D., , D. R. Watts, , G. G. Sutyrin, , and H. Sasaki, 2012: Evidence of vertical coupling between the Kuroshio Extension and topographically controlled deep eddies. J. Mar. Res., 70, 719–747, doi:10.1357/002224012806290723.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., , and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, doi:10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., , and M. E. McIntyre, 1990: On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci., 47, 20212031, doi:10.1175/1520-0469(1990)047<2021:OTCAIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Howe, P. J., , K. A. Donohue, , and D. R. Watts, 2009: Stream-coordinate structure and variability of the Kuroshio Extension. Deep-Sea Res., 56, 10931116, doi:10.1016/j.dsr.2009.03.007.

    • Search Google Scholar
    • Export Citation
  • Iselin, C. O., 1939: The influence of vertical and lateral turbulence on the characteristics of the waters at mid-depths. Eos, Trans. Amer. Geophys. Union, 20, 414417, doi:10.1029/TR020i003p00414.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., , N. G. Hogg, , and P. Malanotte-Rizzoli, 1996: Recirculation gyres forced by a beta-plane jet. J. Phys. Oceanogr., 26, 492504, doi:10.1175/1520-0485(1996)026<0492:RGFBAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771679, doi:10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2009: The CLIMODE field campaign: Observing the cycle of convection and restratification over the Gulf Stream. Bull. Amer. Meteor. Soc., 90, 13371350, doi:10.1175/2009BAMS2706.1.

    • Search Google Scholar
    • Export Citation
  • Mizuno, K., , and W. B. White, 1983: Annual and interannual variability in the Kuroshio Current System. J. Phys. Oceanogr., 13, 18471867, doi:10.1175/1520-0485(1983)013<1847:AAIVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, R. B., 1940: The present evidence on the importance of lateral mixing processes in the ocean. Bull. Amer. Meteor. Soc., 21, 8794.

    • Search Google Scholar
    • Export Citation
  • Oka, E., , and B. Qiu, 2012: Progress of North Pacific mode water research in the past decade. J. Oceanogr., 68, 520, doi:10.1007/s10872-011-0032-5.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, doi:10.1175/JPO2807.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and S. Chen, 2006: Decadal variability in the formation of the North Pacific Subtropical Mode Water: Oceanic versus atmospheric control. J. Phys. Oceanogr., 36, 13651380, doi:10.1175/JPO2918.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , P. Hacker, , S. Chen, , K. A. Donohue, , D. R. Watts, , H. Mitsudera, , N. G. Hogg, , and S. R. Jayne, 2006: Observations of the subtropical mode water evolution from the Kuroshio Extension System Study. J. Phys. Oceanogr., 36, 457473, doi:10.1175/JPO2849.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , S. Chen, , and P. Hacker, 2007: Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio Extension System Study (KESS). J. Phys. Oceanogr., 37, 9821000, doi:10.1175/JPO3097.1.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , S. R. Jayne, , J. L. McClean, , and M. E. Maltrud, 2007: Formation of subtropical mode water in a high-resolution ocean simulation of the Kuroshio Extension region. Ocean Modell., 17, 338356, doi:10.1016/j.ocemod.2007.03.002.

    • Search Google Scholar
    • Export Citation
  • Ringler, T., , and P. Gent, 2011: An eddy closure for potential vorticity. Ocean Modell., 39, 125134, doi:10.1016/j.ocemod.2011.02.003.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., , and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19571962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1988: Potential vorticity distribution in the North Pacific. J. Phys. Oceanogr., 18, 89106, doi:10.1175/1520-0485(1988)018<0089:PVDITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tracey, K. L., , D. R. Watts, , K. A. Donohue, , and H. Ichikawa, 2012: Propagation of Kuroshio Extension meanders between 143°E and 149°E. J. Phys. Oceanogr., 42, 581–601, doi:10.1175/JPO-D-11-0138.1.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , I. M. Held, , and V. D. Larichev, 1997: Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27, 567580, doi:10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waterman, S. N., , and S. R. Jayne, 2011: Eddy-mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, doi:10.1175/2010JPO4477.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, C., , and R. G. Williams, 2004: Why are eddy fluxes of potential vorticity difficult to parameterize? J. Phys. Oceanogr., 34, 142155, doi:10.1175/1520-0485(2004)034<0142:WAEFOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 4
PDF Downloads 11 11 3

Rapid Eddy-Induced Modification of Subtropical Mode Water during the Kuroshio Extension System Study

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • 2 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island
© Get Permissions
Restricted access

Abstract

From 2004 to 2006 an observational array of current- and pressure-recording inverted echo sounders (CPIES) were deployed as part of the Kuroshio Extension (KEx) System Study (KESS). KESS observed a transition from a weakly meandering (“stable”) to strongly meandering (“unstable”) state (Qiu and Chen). As the KEx made this transition, potential vorticity (PV) observed within the southern recirculation gyre (SRG) rapidly increased from January to July 2005. In this study, the authors diagnose eddy PV fluxes (EPVFs) in isentropic coordinates within the subtropical mode water (STMW) layer from the CPIES data to determine the role of mesoscale eddies in this rapid increase of PV.

The rapid increase in PV within the SRG coincided with enhanced cross-front EPVFs and eddy PV flux convergence upstream of a mean trough in the KEx path and adjacent to the SRG. The enhanced cross-front EPVFs were the result of the formation of a cold-core ring (CCR) and the interaction of the jet with a preexisting CCR. Eddy diffusivities are diagnosed for the unstable regime with values that range from 100 to 2000 m2 s−1. The high eddy diffusivities during the unstable regime reflect the nature of mesoscale CCR formation and CCR–jet interaction as efficient mechanisms for stirring and mixing high PV waters from the north side of the KEx into the low PV waters of the SRG where STMW resides. This mechanism for cross-frontal exchange can explain observed increases in the STMW PV in the SRG over the 16 months of KESS observations.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Stuart P. Bishop, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: sbishop@ucar.edu

Abstract

From 2004 to 2006 an observational array of current- and pressure-recording inverted echo sounders (CPIES) were deployed as part of the Kuroshio Extension (KEx) System Study (KESS). KESS observed a transition from a weakly meandering (“stable”) to strongly meandering (“unstable”) state (Qiu and Chen). As the KEx made this transition, potential vorticity (PV) observed within the southern recirculation gyre (SRG) rapidly increased from January to July 2005. In this study, the authors diagnose eddy PV fluxes (EPVFs) in isentropic coordinates within the subtropical mode water (STMW) layer from the CPIES data to determine the role of mesoscale eddies in this rapid increase of PV.

The rapid increase in PV within the SRG coincided with enhanced cross-front EPVFs and eddy PV flux convergence upstream of a mean trough in the KEx path and adjacent to the SRG. The enhanced cross-front EPVFs were the result of the formation of a cold-core ring (CCR) and the interaction of the jet with a preexisting CCR. Eddy diffusivities are diagnosed for the unstable regime with values that range from 100 to 2000 m2 s−1. The high eddy diffusivities during the unstable regime reflect the nature of mesoscale CCR formation and CCR–jet interaction as efficient mechanisms for stirring and mixing high PV waters from the north side of the KEx into the low PV waters of the SRG where STMW resides. This mechanism for cross-frontal exchange can explain observed increases in the STMW PV in the SRG over the 16 months of KESS observations.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Stuart P. Bishop, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: sbishop@ucar.edu
Save