• Benthuysen, J., , R. Furue, , J. McCreary, , N. L. Bindoff, , and H. E. Phillips, 2014: Dynamics of the Leeuwin Current: Part 2. Impacts of mixing, friction, and advection on a buoyancy-driven eastern boundary current over a shelf. Dyn. Atmos. Oceans, 65, 3963, doi:10.1016/j.dynatmoce.2013.10.004.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., , and C. L. Wolfe, 2013: Adiabatic eastern boundary currents. J. Phys. Oceanogr., 43, 11271149, doi:10.1175/JPO-D-12-0211.1.

    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1978: The arrested topographic wave. J. Phys. Oceanogr., 8, 4762, doi:10.1175/1520-0485(1978)008<0047:TATW>2.0.CO;2.

  • Csanady, G. T., 1985: “Pycnobathic” currents over the upper continental slope. J. Phys. Oceanogr., 15, 306315, doi:10.1175/1520-0485(1985)015<0306:COTUCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 1991: Arrested fronts. J. Mar. Res., 49, 2152, doi:10.1357/002224091784968576.

  • Dewar, W. K., , R. M. Samelson, , and G. K. Vallis, 2005: The ventilated pool: A model of subtropical mode water. J. Phys. Oceanogr., 35, 137150, doi:10.1175/JPO-2681.1.

    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., , S. E. Wijffels, , M. E. Maltrud, , J. A. Church, , and M. Tomczak, 2006: Role of eddies in cooling the Leeuwin Current. Geophys. Res. Lett.,33, L05603, doi:10.1029/2005GL025216.

  • Domingues, C. M., , M. E. Maltrud, , S. E. Wijffels, , J. A. Church, , and M. Tomczak, 2007: Simulated Lagrangian pathways between the Leeuwin Current system and the upper-ocean circulation of the southeast Indian Ocean. Deep-Sea Res. II, 54, 797817, doi:10.1016/j.dsr2.2006.10.003.

    • Search Google Scholar
    • Export Citation
  • Feng, M., , G. Meyers, , A. Pearce, , and S. Wijffels, 2003: Annual and interannual variations of the Leeuwin Current at 32°S. J. Geophys. Res., 108, 3355, doi:10.1029/2002JC001763.

    • Search Google Scholar
    • Export Citation
  • Feng, M., , S. Wijffels, , J. S. Godfrey, , and G. Meyers, 2005: Do eddies play a role in the momentum balance of the Leeuwin Current? J. Phys. Oceanogr., 35, 964975, doi:10.1175/JPO2730.1.

    • Search Google Scholar
    • Export Citation
  • Furue, R., , J. P. McCreary, , J. Benthuysen, , H. E. Phillips, , and N. L. Bindoff, 2013: Dynamics of the Leeuwin Current: Part 1. Coastal flows in an inviscid, variable-density, layer model. Dyn. Atmos. Oceans, 63, 2459, doi:10.1016/j.dynatmoce.2013.03.003.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., , and K. R. Ridgway, 1985: The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: Longshore steric height gradients, wind stresses and geostrophic flow. J. Phys. Oceanogr., 15, 481495, doi:10.1175/1520-0485(1985)015<0481:TLSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., , and A. J. Weaver, 1991: Is the Leeuwin Current driven by Pacific heating and winds? Prog. Oceanogr., 27, 225272, doi:10.1016/0079-6611(91)90026-I.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., , and J. P. McCreary, 1986: On the dynamics of the throughflow from the Pacific into the Indian Ocean. J. Phys. Oceanogr., 16, 21912198, doi:10.1175/1520-0485(1986)016<2191:OTDOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., , J. Pedlosky, , and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, doi:10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the coastal undercurrent. Philos. Trans. Roy. Soc. London, A302, 385413, doi:10.1098/rsta.1981.0176.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., , S. R. Shetye, , and P. K. Kundu, 1986: Thermohaline forcing of eastern boundary currents: With application to the circulation off the west coast of Australia. J. Mar. Res., 44, 7192, doi:10.1357/002224086788460184.

    • Search Google Scholar
    • Export Citation
  • Meuleners, M. J., , C. B. Pattiaratchi, , and G. N. Ivey, 2007: Numerical modelling of the mean flow characteristics of the Leeuwin Current system. Deep-Sea Res. II, 54, 837858, doi:10.1016/j.dsr2.2007.02.003.

    • Search Google Scholar
    • Export Citation
  • Pattiaratchi, C., , and M. Woo, 2009: The mean state of the Leeuwin Current system between North West Cape and Cape Leeuwin. J. Roy. Soc. West. Aust., 92, 221241.

    • Search Google Scholar
    • Export Citation
  • Rennie, S. J., , C. P. Pattiaratchi, , and R. D. McCauley, 2007: Eddy formation through the interaction between the Leeuwin Current, Leeuwin Undercurrent and topography. Deep-Sea Res. II, 54, 818836, doi:10.1016/j.dsr2.2007.02.005.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., , and S. A. Condie, 2004: The 5500-km-long boundary flow off western and southern Australia. J. Geophys. Res.,109, C04017, doi:10.1029/2003JC001921.

  • Sarkisyan, A. S., , and V. F. Ivanov, 1971: Joint effect of baroclinicity and bottom relief as an important factor in the dynamics of sea currents. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana, 7, 173188.

    • Search Google Scholar
    • Export Citation
  • Schloesser, F., , R. Furue, , J. P. McCreary, , and A. Timmermann, 2012: Dynamics of the Atlantic meridional overturning circulation. Part 1: Buoyancy-forced response. Prog. Oceanogr., 101, 3362, doi:10.1016/j.pocean.2012.01.002.

    • Search Google Scholar
    • Export Citation
  • Schloesser, F., , R. Furue, , J. P. McCreary, , and A. Timmermann, 2014: Dynamics of the Atlantic meridional overturning circulation. Part 2: Forcing by winds and buoyancy. Prog. Oceanogr., 120, 154176, doi:10.1016/j.pocean.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., , A. Huyer, , J. S. Godfrey, , and J. A. Church, 1991: The Leeuwin Current off Western Australia, 1986–1987. J. Phys. Oceanogr., 21, 323345, doi:10.1175/1520-0485(1991)021<0323:TLCOWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2010: Dynamics of downwelling in an eddy-resolving convective basin. J. Phys. Oceanogr., 40, 23412347, doi:10.1175/2010JPO4465.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., 1984: Observations of the Leeuwin Current off Western Australia. J. Phys. Oceanogr., 14, 623628, doi:10.1175/1520-0485(1984)014<0623:OOTLCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., 1987: Continental-shelf-scale model of the Leeuwin Current. J. Mar. Res., 45, 813827, doi:10.1357/002224087788327190.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., , and J. H. Middleton, 1989: On the dynamics of the Leeuwin Current. J. Phys. Oceanogr., 19, 626648, doi:10.1175/1520-0485(1989)019<0626:OTDOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., , and J. H. Middleton, 1990: An analytic model for the Leeuwin Current of West Australia. Cont. Shelf Res., 10, 105122, doi:10.1016/0278-4343(90)90025-H.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 7
PDF Downloads 15 15 6

A Dynamical Model for the Leeuwin Undercurrent

View More View Less
  • 1 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island
© Get Permissions
Restricted access

Abstract

Recently, Furue et al. explored analytic solutions to a dynamical model for the Leeuwin Current system (LCS) off the coast of Western Australia. Their linear, variable density, two-layer model reduces to a one-layer system near the coast. The circulation is determined by matching solutions in the coastal and offshore regions across the “grounding line” and displays many features observed in the LCS. However, it does not include a Leeuwin Undercurrent (LUC). Here, that model is extended considering an across-shore density gradient (front) caused by relatively light, tropical water being carried poleward by the Leeuwin Current (LC). As a result of including the front, the LCS circulation changes considerably; the LC deepens and strengthens significantly toward the pole, and the LCS now includes an equatorward LUC on the offshore edge of the LC. Differences in density and sea surface height across the front both contribute to the pressure gradient driving the LUC.

Corresponding author address: Fabian Schloesser, Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, RI 02882. E-mail: schloess@mail.uri.edu

Abstract

Recently, Furue et al. explored analytic solutions to a dynamical model for the Leeuwin Current system (LCS) off the coast of Western Australia. Their linear, variable density, two-layer model reduces to a one-layer system near the coast. The circulation is determined by matching solutions in the coastal and offshore regions across the “grounding line” and displays many features observed in the LCS. However, it does not include a Leeuwin Undercurrent (LUC). Here, that model is extended considering an across-shore density gradient (front) caused by relatively light, tropical water being carried poleward by the Leeuwin Current (LC). As a result of including the front, the LCS circulation changes considerably; the LC deepens and strengthens significantly toward the pole, and the LCS now includes an equatorward LUC on the offshore edge of the LC. Differences in density and sea surface height across the front both contribute to the pressure gradient driving the LUC.

Corresponding author address: Fabian Schloesser, Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, RI 02882. E-mail: schloess@mail.uri.edu
Save