• Balmforth, N. J., , and Y.-N. Young, 2002: Stratified Kolmogorov flow. J. Fluid Mech., 450, 131167, doi:10.1017/S0022111002006371.

  • Balmforth, N. J., , and Y.-N. Young, 2005: Stratified Kolmogorov flow. Part 2. J. Fluid Mech., 528, 2342, doi:10.1017/S002211200400271X.

    • Search Google Scholar
    • Export Citation
  • Benilov, E. S., 1993: Baroclinic instability of large-amplitude geostrophic flows. J. Fluid Mech., 251, 501514, doi:10.1017/S0022112093003490.

    • Search Google Scholar
    • Export Citation
  • Benilov, E. S., 1995a: Stability of large-amplitude geostrophic flows localized in a thin layer. J. Fluid Mech., 288, 157174, doi:10.1017/S0022112095001108.

    • Search Google Scholar
    • Export Citation
  • Benilov, E. S., 1995b: Baroclinic instability of quasi-geostrophic flows localized in a thin layer. J. Fluid Mech., 288, 175200, doi:10.1017/S002211209500111X.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., , I. Kamenkovich, , and J. Pedlosky, 2009: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425, doi:10.1017/S0022112009006375.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., , S. Karabasov, , T. Farrar, , and I. Kamenkovich, 2011: On latency of multiple zonal jets in the oceans. J. Fluid Mech., 686, 534567, doi:10.1017/jfm.2011.345.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

  • Connaughton, C. P., , B. T. Nadiga, , S. V. Nazarenko, , and B. E. Quinn, 2010: Modulational instability of Rossby and drift waves and generation of zonal jets. J. Fluid Mech., 654, 207231, doi:10.1017/S0022112010000510.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Eden, C., 2011: A closure for mesoscale eddy fluxes based on linear instability theory. Ocean Modell., 39, 362369, doi:10.1016/j.ocemod.2011.05.009.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., , and P. J. Ioannou, 2009: A theory of baroclinic turbulence. J. Atmos. Sci., 66, 24442454, doi:10.1175/2009JAS2989.1.

  • Frisius, T., 1998: A mechanism for the barotropic equilibration of baroclinic waves. J. Atmos. Sci., 55, 29182936, doi:10.1175/1520-0469(1998)055<2918:AMFTBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gama, S., , M. Vergassola, , and U. Frisch, 1994: Negative eddy viscosity in isotropically forced two-dimensional flow: Linear and nonlinear dynamics. J. Fluid Mech., 260, 95126, doi:10.1017/S0022112094003459.

    • Search Google Scholar
    • Export Citation
  • Gent, P., , and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1974: The stability on planetary waves on an infinite beta-plane. Geophys. Fluid Dyn., 6, 2947, doi:10.1080/03091927409365786.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and V. D. Larichev, 1996: Scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946952, doi:10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henning, C. C., , and G. Vallis, 2005: The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. J. Phys. Oceanogr., 35, 880896, doi:10.1175/JPO2727.1.

    • Search Google Scholar
    • Export Citation
  • Hogg, N., , and B. Owens, 1999: Direct measurement of the deep circulation within the Brazil basin. Deep-Sea Res., 46, 335353, doi:10.1016/S0967-0645(98)00097-6.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., , P. Berloff, , and J. Pedlosky, 2009: Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic. J. Phys. Oceanogr., 39, 31623175, doi:10.1175/2009JPO4239.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1997: On the parameterization of eddy transfer Part I. Theory. J. Mar. Res., 55, 11711197, doi:10.1357/0022240973224102.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 2005: Parameterization of eddy effects on mixed layers and tracer transport: A linearized eddy perspective. J. Phys. Oceanogr., 35, 17171725, doi:10.1175/JPO2781.1.

    • Search Google Scholar
    • Export Citation
  • Kimura, S., , and W. D. Smyth, 2011: Secondary instability of salt sheets. J. Mar. Res., 69, 5777, doi:10.1357/002224011798147624.

  • Lapeyre, G., , and I. M. Held, 2003: Diffusivity, kinetic energy dissipation, and closure theories for the poleward eddy heat flux. J. Atmos. Sci., 60, 29072916, doi:10.1175/1520-0469(2003)060<2907:DKEDAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larichev, V., , and I. Held, 1995: Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr., 25, 22852297, doi:10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lick, W., 1965: The instability of a fluid layer with time-dependent heating. J. Fluid Mech., 21, 565576, doi:10.1017/S0022112065000332.

    • Search Google Scholar
    • Export Citation
  • Malkus, W. V. R., , and G. Veronis, 1958: Finite amplitude cellular convection. J. Fluid Mech., 4, 225261, doi:10.1017/S0022112058000410.

    • Search Google Scholar
    • Export Citation
  • Manfroi, A., , and W. Young, 1999: Slow evolution of zonal jets on the beta plane. J. Atmos. Sci., 56, 784800, doi:10.1175/1520-0469(1999)056<0784:SEOZJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manfroi, A., , and W. Young, 2002: Stability of beta-plane Kolmogorov flow. Physica D, 162, 208232, doi:10.1016/S0167-2789(01)00384-0.

  • Marshall, D. P., , J. R. Maddison, , and P. S. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539557, doi:10.1175/JPO-D-11-048.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , C. Hill, , L. Perelman, , and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., , B. Bang, , and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, doi:10.1029/2005GL022728.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., Jr., and Coauthors, 1998: Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263266, doi:10.1038/28367.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Mei, C. C., , and M. Vernescu, 2010: Homogenization Methods for Multiscale Mechanics. World Scientific Publishing, 330 pp.

  • Molemaker, M. J., , J. C. McWilliams, , and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the oceans. J. Phys. Oceanogr., 41, 485502, doi:10.1175/2010JPO4529.1.

    • Search Google Scholar
    • Export Citation
  • Novikov, A., , and G. Papanicolaou, 2001: Eddy viscosity of cellular flows. J. Fluid Mech., 446, 173198.

  • Pedlosky, J., 1970: Finite-amplitude baroclinic waves. J. Atmos. Sci., 27, 1530, doi:10.1175/1520-0469(1970)027<0015:FABW>2.0.CO;2.

  • Pedlosky, J., 1971: Finite-amplitude baroclinic waves with small dissipation. J. Atmos. Sci., 28, 587597, doi:10.1175/1520-0469(1971)028<0587:FABWWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1981: Nonlinear dynamics of baroclinic wave ensembles. J. Fluid Mech., 102, 169209, doi:10.1017/S0022112081002590.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 710 pp.

  • Phillips, N. A., 1951: A simple three-dimensional model for the study of large scale extra tropical flow pattern. J. Meteor., 8, 381394, doi:10.1175/1520-0469(1951)008<0381:ASTDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Radko, T., 2011a: On the generation of large-scale structures in a homogeneous eddy field. J. Fluid Mech., 668, 7699, doi:10.1017/S0022112010004568.

    • Search Google Scholar
    • Export Citation
  • Radko, T., 2011b: Eddy viscosity and diffusivity in the modon-sea model. J. Mar. Res., 69, 723752, doi:10.1357/002224011799849426.

  • Radko, T., , and M. E. Stern, 1999: On the propagation of oceanic mesoscale vortices. J. Fluid Mech., 380, 3957, doi:10.1017/S0022112098003371.

    • Search Google Scholar
    • Export Citation
  • Radko, T., , and M. E. Stern, 2000: Self-propagating eddies on the stratified f plane. J. Phys. Oceanogr., 30, 31343144, doi:10.1175/1520-0485(2000)030<3134:SPEOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Radko, T., , and J. Marshall, 2004: Eddy-induced diapycnal fluxes and their role in the maintenance of the thermocline. J. Phys. Oceanogr., 34, 372383, doi:10.1175/1520-0485(2004)034<0372:EDFATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Radko, T., , and I. Kamenkovich, 2011: Semi-adiabatic model of the deep stratification and meridional overturning. J. Phys. Oceanogr., 41, 757780, doi:10.1175/2010JPO4538.1.

    • Search Google Scholar
    • Export Citation
  • Radko, T., , and D. P. Smith, 2012: Equilibrium transport in double-diffusive convection. J. Fluid Mech., 692, 527, doi:10.1017/jfm.2011.343.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., , and W. R. Young, 1982: A theory of the wind-driven circulation. Part I: Mid-ocean gyres. J. Mar. Res., 40 (Suppl.), 559596.

    • Search Google Scholar
    • Export Citation
  • Robinson, J. L., 1976: Theoretical analysis of convective instability of a growing horizontal thermal boundary layer. Phys. Fluids, 19, 778791, doi:10.1063/1.861570.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2012: Finger puzzles. J. Fluid Mech., 692, 14, doi:10.1017/jfm.2011.468.

  • Sivashinsky, G., 1985: Weak turbulence in periodic flows. Physica D, 17, 243255, doi:10.1016/0167-2789(85)90009-0.

  • Spall, M. A., , and D. C. Chapman, 1998: On the efficiency of baroclinic eddy heat transport across narrow fronts. J. Phys. Oceanogr., 28, 22752287, doi:10.1175/1520-0485(1998)028<2275:OTEOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1960: The “salt-fountain” and thermohaline convection. Tellus, 12, 172175, doi:10.1111/j.2153-3490.1960.tb01295.x.

  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys. Union, 29, 202206.

  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, doi:10.1175/JCLI3689.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., , and W. R. Young, 2006: Scaling baroclinic eddy fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36, 720738, doi:10.1175/JPO2874.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., , and W. R. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64, 32143231, doi:10.1175/JAS4000.1.

    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1966a: Wind-driven ocean circulation—Part 1. Linear theory and perturbation analysis. Deep-Sea Res. Oceanogr. Abstr., 13, 1729, doi:10.1016/0011-7471(66)90003-9.

    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1966b: Wind-driven ocean circulation—Part 2. Numerical solutions of the non-linear problem. Deep-Sea Res. Oceanogr. Abstr., 13, 3155, doi:10.1016/0011-7471(66)90004-0.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., , J. Marshall, , T. Haine, , and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., , and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean model? J. Phys. Oceanogr., 40, 15201538, doi:10.1175/2010JPO4393.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., , and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, doi:10.1175/2011JPO4570.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 6
PDF Downloads 8 8 5

Nonlinear Equilibration of Baroclinic Instability: The Growth Rate Balance Model

View More View Less
  • 1 Department of Oceanography, Naval Postgraduate School, Monterey, California
© Get Permissions
Restricted access

Abstract

A theoretical model is developed, which attempts to predict the lateral transport by mesoscale variability, generated and maintained by baroclinic instability of large-scale flows. The authors are particularly concerned by the role of secondary instabilities of primary baroclinically unstable modes in the saturation of their linear growth. Theory assumes that the fully developed equilibrium state is characterized by the comparable growth rates of primary and secondary instabilities. This assumption makes it possible to formulate an efficient algorithm for evaluating the equilibrium magnitude of mesoscale eddies as a function of the background parameters: vertical shear, stratification, beta effect, and bottom drag. The proposed technique is applied to two classical models of baroclinic instability—the Phillips two-layer model and the linearly stratified Eady model. Theory predicts that the eddy-driven lateral mixing rapidly intensifies with increasing shear and weakens when the beta effect is increased. The eddy transport is also sensitive to the stratification pattern, decreasing as the ratio of upper/lower layer depths in the Phillips model is decreased below unity. Theory is successfully tested by a series of direct numerical simulations that span a wide parameter range relevant for typical large-scale currents in the ocean. The spontaneous emergence of large-scale patterns induced by mesoscale variability, and their role in the cross-flow eddy transport, is examined using a suite of numerical simulations.

Corresponding author address: T. Radko, Department of Oceanography, Naval Postgraduate School, 883 Dyer Road, Bldg. 232, Room 344, Monterey, CA 93943. E-mail: tradko@nps.edu

Abstract

A theoretical model is developed, which attempts to predict the lateral transport by mesoscale variability, generated and maintained by baroclinic instability of large-scale flows. The authors are particularly concerned by the role of secondary instabilities of primary baroclinically unstable modes in the saturation of their linear growth. Theory assumes that the fully developed equilibrium state is characterized by the comparable growth rates of primary and secondary instabilities. This assumption makes it possible to formulate an efficient algorithm for evaluating the equilibrium magnitude of mesoscale eddies as a function of the background parameters: vertical shear, stratification, beta effect, and bottom drag. The proposed technique is applied to two classical models of baroclinic instability—the Phillips two-layer model and the linearly stratified Eady model. Theory predicts that the eddy-driven lateral mixing rapidly intensifies with increasing shear and weakens when the beta effect is increased. The eddy transport is also sensitive to the stratification pattern, decreasing as the ratio of upper/lower layer depths in the Phillips model is decreased below unity. Theory is successfully tested by a series of direct numerical simulations that span a wide parameter range relevant for typical large-scale currents in the ocean. The spontaneous emergence of large-scale patterns induced by mesoscale variability, and their role in the cross-flow eddy transport, is examined using a suite of numerical simulations.

Corresponding author address: T. Radko, Department of Oceanography, Naval Postgraduate School, 883 Dyer Road, Bldg. 232, Room 344, Monterey, CA 93943. E-mail: tradko@nps.edu
Save