• Feistel, R., 2008: A Gibbs function for seawater thermodynamics for −6 to 80°C and salinity up to 120 g kg−1. Deep-Sea Res. I, 55, 16391671, doi:10.1016/j.dsr.2008.07.004.

    • Search Google Scholar
    • Export Citation
  • Feistel, R., , and E. Hagen, 1998: A Gibbs thermodynamic potential of sea ice. Cold Reg. Sci. Technol., 28, 83142, doi:10.1016/S0165-232X(98)00014-7.

    • Search Google Scholar
    • Export Citation
  • Feistel, R., , and W. Wagner, 2005: High-pressure thermodynamic Gibbs functions of ice and sea ice. J. Mar. Res., 63, 95139, doi:10.1357/0022240053693789.

    • Search Google Scholar
    • Export Citation
  • Feistel, R., , and W. Wagner, 2006: A new equation of state for H2O ice Ih. J. Phys. Chem. Ref. Data, 35, 10211047, doi:10.1063/1.2183324.

    • Search Google Scholar
    • Export Citation
  • Feistel, R., , and G. M. Marion, 2007: A Gibbs–Pitzer function of high-salinity seawater thermodynamics. Prog. Oceanogr., 74, 515539, doi:10.1016/j.pocean.2007.04.020.

    • Search Google Scholar
    • Export Citation
  • Feistel, R., , D. G. Wright, , K. Miyagawa, , A. H. Harvey, , J. Hruby, , D. R. Jackett, , T. J. McDougall, , and W. Wagner, 2008: Mutually consistent thermodynamic potentials for fluid water, ice and seawater: A new standard for oceanography. Ocean Sci., 4, 275291, doi:10.5194/os-4-275-2008.

    • Search Google Scholar
    • Export Citation
  • Feistel, R., and Coauthors, 2010: Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air—Part 1: Background and equations. Ocean Sci., 6, 633677, doi:10.5194/os-6-633-2010.

    • Search Google Scholar
    • Export Citation
  • Gade, H. G., 1979: Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9, 189198, doi:10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Galton-Fenzi, B. K., , J. R. Hunter, , R. Coleman, , S. J. Marsland, , and R. C. Warner, 2012: Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. J. Geophys. Res., 117, C09031, doi:10.1029/2012JC008214.

    • Search Google Scholar
    • Export Citation
  • Graham, F. S., , and T. J. McDougall, 2013: Quantifying the non-conservative production of Conservative Temperature, potential temperature and entropy. J. Phys. Oceanogr., 43, 838862, doi:10.1175/JPO-D-11-0188.1.

    • Search Google Scholar
    • Export Citation
  • IAPWS, 2008: Release on the IAPWS formulation 2008 for the thermodynamic properties of seawater. The International Association for the Properties of Water and Steam Rep., 19 pp. [Available online at http://www.iapws.org/relguide/seawater.pdf.]

  • IAPWS, 2009a: Revised release on the equation of state 2006 for H2O ice Ih. The International Association for the Properties of Water and Steam Rep., 12 pp. [Available online at http://www.iapws.org/relguide/Ice-Rev2009.pdf.]

  • IAPWS, 2009b: Revised release on the IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. The International Association for the Properties of Water and Steam Rep., 18 pp. [Available online at http://www.iapws.org/relguide/IAPWS95-Rev.pdf.]

  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission Manuals and Guides 56, 196 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Marion, G. M., , F. J. Millero, , and R. Feistel, 2009: Precipitation of solid phase calcium carbonates and their effect on application of seawater SATP models. Ocean Sci., 5, 285291, doi:10.5194/os-5-285-2009.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, doi:10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., , and R. Feistel, 2003: What causes the adiabatic lapse rate? Deep-Sea Res. I, 50, 15231535, doi:10.1016/j.dsr.2003.09.007.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., , and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 34 pp. [Available online at http://www.teos-10.org/pubs/Getting_Started.pdf.]

  • McDougall, T. J., , and S. J. Wotherspoon, 2014: A simple modification of Newton’s method to achieve convergence of order . Appl. Math. Lett., 29, 20–25, doi:10.1016/j.aml.2013.10.008.

    • Search Google Scholar
    • Export Citation
  • Millero, F. J., , and W. H. Leung, 1976: The thermodynamics of seawater at one atmosphere. Amer. J. Sci., 276, 10351077, doi:10.2475/ajs.276.9.1035.

    • Search Google Scholar
    • Export Citation
  • Millero, F. J., , R. Feistel, , D. G. Wright, , and T. J. McDougall, 2008: The composition of standard seawater and the definition of the reference-composition salinity scale. Deep-Sea Res. I, 55, 5072, doi:10.1016/j.dsr.2007.10.001.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., , T. McDougall, , R. Feistel, , and R. Tailleux, 2012: An historical perspective on the development of the Thermodynamic Equation of Seawater—2010. Ocean Sci., 8, 161174, doi:10.5194/os-8-161-2012.

    • Search Google Scholar
    • Export Citation
  • Post, A. L., and Coauthors, 2014: Modern sedimentation, circulation and life beneath the Amery Ice Shelf, East Antarctica. Cont. Shelf Res., 74, 7787, doi:10.1016/j.csr.2013.10.010.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2010: Identifying and quantifying nonconservative energy production/destruction terms in hydrostatic Boussinesq primitive equation models. Ocean Modell., 34, 125136, doi:10.1016/j.ocemod.2010.05.003.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 27
PDF Downloads 40 40 23

Melting of Ice and Sea Ice into Seawater and Frazil Ice Formation

View More View Less
  • 1 School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
  • 2 Leibniz-Institut für Ostseeforschung, Warnemünde, Germany
  • 3 Australian Antarctic Division, Kingston, and Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

The thermodynamic consequences of the melting of ice and sea ice into seawater are considered. The International Thermodynamic Equation Of Seawater—2010 (TEOS-10) is used to derive the changes in the Conservative Temperature and Absolute Salinity of seawater that occurs as a consequence of the melting of ice and sea ice into seawater. Also, a study of the thermodynamic relationships involved in the formation of frazil ice enables the calculation of the magnitudes of the Conservative Temperature and Absolute Salinity changes with pressure when frazil ice is present in a seawater parcel, assuming that the frazil ice crystals are sufficiently small that their relative vertical velocity can be ignored. The main results of this paper are the equations that describe the changes to these quantities when ice and seawater interact, and these equations can be evaluated using computer software that the authors have developed and is publicly available in the Gibbs SeaWater (GSW) Oceanographic Toolbox of TEOS-10.

Corresponding author address: Trevor J. McDougall, School of Mathematics and Statistics, University of New South Wales, NSW 2052, Australia. E-mail: Trevor.McDougall@unsw.edu.au

Abstract

The thermodynamic consequences of the melting of ice and sea ice into seawater are considered. The International Thermodynamic Equation Of Seawater—2010 (TEOS-10) is used to derive the changes in the Conservative Temperature and Absolute Salinity of seawater that occurs as a consequence of the melting of ice and sea ice into seawater. Also, a study of the thermodynamic relationships involved in the formation of frazil ice enables the calculation of the magnitudes of the Conservative Temperature and Absolute Salinity changes with pressure when frazil ice is present in a seawater parcel, assuming that the frazil ice crystals are sufficiently small that their relative vertical velocity can be ignored. The main results of this paper are the equations that describe the changes to these quantities when ice and seawater interact, and these equations can be evaluated using computer software that the authors have developed and is publicly available in the Gibbs SeaWater (GSW) Oceanographic Toolbox of TEOS-10.

Corresponding author address: Trevor J. McDougall, School of Mathematics and Statistics, University of New South Wales, NSW 2052, Australia. E-mail: Trevor.McDougall@unsw.edu.au
Save