• Aoki, S., 2002: Coherent sea level response to the Antarctic Oscillation. Geophys. Res. Lett., 29, 1950, doi:10.1029/2002GL015733.

  • Baker-Yeboah, S., , D. R. Watts, , and D. A. Byrne, 2009: Measurements of sea surface height variability in the eastern South Atlantic from pressure sensor equipped inverted echo sounders: Baroclinic and barotropic components. J. Atmos. Oceanic Technol., 26, 25932609, doi:10.1175/2009JTECHO659.1.

    • Search Google Scholar
    • Export Citation
  • Behnisch, M., , A. Macrander, , O. Boebel, , J.-O. Wolff, , and J. Schröter, 2013: Barotropic and deep-referenced baroclinic SSH variability derived from pressure inverted echo sounders (PIES) south of Africa. J. Geophys. Res., 118, 3046–3058, doi:10.1002/jgrc.20195.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., , and C. Wunsch, 1992: Comparison of synoptic and climatologically mapped sections in the South Pacific Ocean. J. Climate, 5, 631645, doi:10.1175/1520-0442(1992)005<0631:COSACM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., , A. Dispert, , M. Visbeck, , S. R. Rintoul, , and F. U. Schwazkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, doi:10.1038/ngeo362.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., , K. A. Donohue, , D. R. Watts, , K. L. Tracey, , Y. L. Firing, , and A. L. Cutting, 2009: Strong bottom currents and cyclogenesis in Drake Passage. Geophys. Res. Lett.,36, L23602, doi:10.1029/2009GL040940.

  • Chereskin, T. K., , K. A. Donohue, , and D. R. Watts, 2012: cDrake: Dynamics and transport of the Antarctic Circumpolar Current in Drake Passage. Oceanography, 25 (3), 134135, doi:10.5670/oceanog.2012.86.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., , and M. Pavic, 2007: Surface geostrophic currents across the Antarctic Circumpolar Current in Drake Passage from 1992 to 2004. Prog. Oceanogr., 73, 296310, doi:10.1016/j.pocean.2006.07.010.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., , S. G. Alderson, , and B. A. King, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108, 8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Cutting, A. L., 2010: Constituents of sea surface height variability in Drake Passage. M.S. thesis, Department of Physical Oceanography, University of Rhode Island, 68 pp.

  • Donohue, K. A., , D. R. Watts, , K. L. Tracey, , A. D. Greene, , and M. Kenelly, 2010: Mapping circulation in the Kuroshio Extension with an array of current and pressure recording inverted echo sounders. J. Atmos. Oceanic Technol., 27, 507527, doi:10.1175/2009JTECHO686.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , C. Provost, , A. Renault, , N. Sennéchael, , N. Barré, , Y.-H. Park, , and J. H. Lee, 2012: Circulation in Drake Passage revisited using new current time series and satellite altimetry: 1. The Yaghan Basin. J. Geophys. Res., 117, C12024, doi:10.1029/2012JC008264.

    • Search Google Scholar
    • Export Citation
  • Firing, Y. L., , T. K. Chereskin, , and M. R. Mazloff, 2011: Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations. J. Geophys. Res.,116, C08015, doi:10.1029/2011JC006999.

  • Firing, Y. L., , T. K. Chereskin, , D. R. Watts, , K. L. Tracey, , and C. Provost, 2014: Computation of geostrophic streamfunction, its derivatives, and error estimates from an array of CPIES in Drake Passage. J. Atmos. Oceanic Technol.,31, 656–680, doi:10.1175/JTECH-D-13-00142.1.

  • Gille, S. T., , and C. W. Hughes, 2001: Aliasing of high-frequency variability by altimetry: Evaluation from bottom pressure recorders. Geophys. Res. Lett., 28, 17551758, doi:10.1029/2000GL012244.

    • Search Google Scholar
    • Export Citation
  • Griesel, A., , M. R. Mazloff, , and S. T. Gille, 2012: Mean dynamic topography in the Southern Ocean: Evaluating Antarctic Circumpolar Current transport. J. Geophys. Res.,117, C01020, doi:10.1029/2011JC007573.

  • Jackett, D. R., , and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263, doi:10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koshlyakov, M. N., , I. I. Lisina, , E. G. Morozov, , and R. Y. Tarakanov, 2007: Absolute geostrophic currents in the Drake Passage based on observations in 2003 and 2005. Oceanology, 47, 451563, doi:10.1134/S0001437007040029.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., , N. L. Bindoff, , and S. R. Rintoul, 2011a: Estimating the four-dimensional structure of the Southern Ocean using satellite altimetry. J. Atmos. Oceanic Technol., 28, 548568, doi:10.1175/2010JTECHO790.1.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., , N. L. Bindoff, , and S. R. Rintoul, 2011b: Frontal movements and property fluxes: Contributions to heat and freshwater trends in the Southern Ocean. J. Geophys. Res.,116, C08024, doi:10.1029/2010JC006832.

  • Meinen, C. S., , and D. R. Watts, 2000: Vertical structure and transport on a transect across the North Atlantic Current near 42°: Time series and mean. J. Geophys. Res., 105, 21 869–21 891, doi:10.1029/2000JC900097.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., , and C. W. Hughes, 2005: On the sampling timescale required to reliably monitor interannual variability in the Antarctic circumpolar transport. Geophys. Res. Lett.,32, L03609, doi:10.1029/2004GL022086.

  • Meredith, M. P., , P. L. Woodworth, , C. W. Hughes, , and V. Stepanov, 2004: Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the Southern Annular Mode. Geophys. Res. Lett.,31, L21305, doi:10.1029/2004GL021169.

  • Meredith, M. P., and Coauthors, 2011: Sustained monitoring of the Southern Ocean at Drake Passage: Past achievements and future priorities. Rev. Geophys., 49, RG4005, doi:10.1029/2010RG000348.

    • Search Google Scholar
    • Export Citation
  • Munk, W., , and D. Cartwright, 1966: Tidal spectroscopy and prediction. Philos. Trans. Roy. Soc. London, 259, 533581, doi:10.1098/rsta.1966.0024.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., , D. P. Stevens, , and K. J. Heywood, 2003: Water mass conversion, fluxes, and mixing in the Scotia Sea diagnosed by an inverse model. J. Phys. Oceanogr., 33, 25652587, doi:10.1175/1520-0485(2003)033<2565:WMCFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D. J., , T. Whitworth, , and R. D. Pillsbury, 1977: Structure and transport of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 7, 788802, doi:10.1175/1520-0485(1977)007<0788:SATOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , and K. Lettmann, 2007: Barotropic and baroclinic processes in the transport variability of the Antarctic Circumpolar Current. Ocean Dyn., 57, 559578, doi:10.1007/s10236-007-0126-1.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., , T. Whitworth, , and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, doi:10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Renault, A., , C. Provost, , N. Sennéchael, , N. Barré, , and A. Kartavtseff, 2011: Two full-depth velocity sections in the Drake Passage in 2006—Transport estimates. Deep-Sea Res. II, 58, 25722591, doi:10.1016/j.dsr2.2011.01.004.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and Coauthors, 2010: Southern Ocean Observing System (SOOS): Rationale and strategy for sustained observations of the Southern Ocean. Proceedings of OceanObs 09: Sustained Ocean Observations and Information for Society, Vol. 2, J. Hall, D. E. Harrison, and D. Stammer, Eds., European Space Agency Publ. WPP-306, doi:10.5270/OceanObs09.cwp.74.

  • Smith, W. H. F., , and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19571962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., , and S. R. Rintoul, 2007: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37, 13941412, doi:10.1175/JPO3111.1.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., , and S. R. Rintoul, 2009a: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res.,114, C11018, doi:10.1029/2008JC005108.

  • Sokolov, S., , and S. R. Rintoul, 2009b: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height. J. Geophys. Res.,114, C11019, doi:10.1029/2008JC005248.

  • Speer, K., , S. R. Rintoul, , and B. M. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123222, doi:10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., 2003: Seasonal to interannual upper-ocean variability in the Drake Passage. J. Mar. Res., 61, 2757, doi:10.1357/002224003321586408.

    • Search Google Scholar
    • Export Citation
  • Sun, C., , and D. R. Watts, 2001: A circumpolar gravest empirical mode for the Southern Ocean hydrography. J. Geophys. Res., 106, 28332855, doi:10.1029/2000JC900112.

    • Search Google Scholar
    • Export Citation
  • Swart, S., , S. Speich, , I. Ansorge, , and R. Lutjeharms, 2010: An altimetry-based gravest empirical mode south of Africa: 1. Development and validation. J. Geophys. Res.,115, C03002, doi:10.1029/2009JC005299.

  • Thompson, D. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Tracey, K. L., , K. A. Donohue, , D. R. Watts, , and T. Chereskin, 2013: cDrake CPIES data report November 2007 to December 2011. Graduate School of Oceanography, University of Rhode Island GSO Tech. Rep. 2008-2, 72 pp. [Available online at http://digitalcommons.uri.edu/physical_oceanography_techrpts/4.]

  • Watts, D. R., , C. Sun, , and S. Rintoul, 2001: A two-dimensional gravest empirical mode determined from hydrographic observations in the Subantarctic Front. J. Phys. Oceanogr., 31, 21862209, doi:10.1175/1520-0485(2001)031<2186:ATDGEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., III, 1983: Monitoring the transport of the Antarctic Circumpolar Current at Drake Passage. J. Phys. Oceanogr., 13, 20452057, doi:10.1175/1520-0485(1983)013<2045:MTTOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., III, , and R. G. Peterson, 1985: Volume transport of the Antarctic Circumpolar Current from bottom pressure measurements. J. Phys. Oceanogr., 15, 810816, doi:10.1175/1520-0485(1985)015<0810:VTOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 13
PDF Downloads 31 31 8

Baroclinic Transport Time Series of the Antarctic Circumpolar Current Measured in Drake Passage

View More View Less
  • 1 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island
© Get Permissions
Restricted access

Abstract

The first multiyear continuous time series of Antarctic Circumpolar Current (ACC) baroclinic transport through Drake Passage measured by moored observations is presented. From 2007 to 2011, 19 current- and pressure-recording inverted echo sounders and 3 current-meter moorings were deployed in Drake Passage to monitor the transport during the cDrake experiment. Full-depth ACC baroclinic transport relative to the bottom has a mean strength of 127.7 ± 1.0 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) with a standard deviation of 8.1 Sv. Mean annual baroclinic transport is remarkably steady. About 65% of the baroclinic transport variance is associated with time periods shorter than 60 days with peaks at 20 and 55 days. Nearly 28% of apparent energy in the spectrum computed from transport subsampled at the 10-day repeat cycle of the Jason altimeter results from aliasing of high-frequency signals. Approximately 80% of the total baroclinic transport is carried by the Subantarctic Front and the Polar Front. Partitioning the baroclinic transport among neutral density γn layers gives 39.2 Sv for Subantarctic Surface Water and Antarctic Intermediate Water (γn < 27.5 kg m−3), 57.5 Sv for Upper Circumpolar Deep Water (27.5 < γn < 28.0 kg m−3), 27.7 Sv for Lower Circumpolar Deep Water (28.0 < γn < 28.2 kg m−3), and 3.3 Sv for Antarctic Bottom Water (γn > 28.2 kg m−3). The transport standard deviation in these layers decreases with depth (4.0, 3.1, 2.1, and 1.1 Sv, respectively). The transport associated with each of these water masses is statistically steady. The ACC baroclinic transport exhibits considerable variability and is a major contributor to total ACC transport variability.

Current affiliation: National Scientific and Technical Research Council (CONICET), Argentina.

Corresponding author address: María Paz Chidichimo, CONICET/ Departamento de Oceanografía, Servicio de Hidrografía Naval, Av. Montes de Oca 2124, C1270ABV, Buenos Aires, Argentina. E-mail: mpchidichimo@hidro.gov.ar

Abstract

The first multiyear continuous time series of Antarctic Circumpolar Current (ACC) baroclinic transport through Drake Passage measured by moored observations is presented. From 2007 to 2011, 19 current- and pressure-recording inverted echo sounders and 3 current-meter moorings were deployed in Drake Passage to monitor the transport during the cDrake experiment. Full-depth ACC baroclinic transport relative to the bottom has a mean strength of 127.7 ± 1.0 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) with a standard deviation of 8.1 Sv. Mean annual baroclinic transport is remarkably steady. About 65% of the baroclinic transport variance is associated with time periods shorter than 60 days with peaks at 20 and 55 days. Nearly 28% of apparent energy in the spectrum computed from transport subsampled at the 10-day repeat cycle of the Jason altimeter results from aliasing of high-frequency signals. Approximately 80% of the total baroclinic transport is carried by the Subantarctic Front and the Polar Front. Partitioning the baroclinic transport among neutral density γn layers gives 39.2 Sv for Subantarctic Surface Water and Antarctic Intermediate Water (γn < 27.5 kg m−3), 57.5 Sv for Upper Circumpolar Deep Water (27.5 < γn < 28.0 kg m−3), 27.7 Sv for Lower Circumpolar Deep Water (28.0 < γn < 28.2 kg m−3), and 3.3 Sv for Antarctic Bottom Water (γn > 28.2 kg m−3). The transport standard deviation in these layers decreases with depth (4.0, 3.1, 2.1, and 1.1 Sv, respectively). The transport associated with each of these water masses is statistically steady. The ACC baroclinic transport exhibits considerable variability and is a major contributor to total ACC transport variability.

Current affiliation: National Scientific and Technical Research Council (CONICET), Argentina.

Corresponding author address: María Paz Chidichimo, CONICET/ Departamento de Oceanografía, Servicio de Hidrografía Naval, Av. Montes de Oca 2124, C1270ABV, Buenos Aires, Argentina. E-mail: mpchidichimo@hidro.gov.ar
Save