• Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, doi:10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr.,37, 2022–2037, doi:10.1175/JPO3106.1.

  • Comiso, J. C., 2012: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 2. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/nsidc0079_bootstrap_seaice.gd.html.]

  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, doi:10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and M. D. Morehead, 1991: Internal waves and velocity fine structure in the Arctic Ocean. J. Geophys. Res., 96, 12 72512 738, doi:10.1029/91JC01071.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and J. H. Morison, 1992: Internal waves and mixing in the Arctic Ocean. Deep-Sea Res., 39 (Suppl. 2), S459S484, doi:10.1016/S0198-0149(06)80016-6.

    • Search Google Scholar
    • Export Citation
  • Dosser, H. V., L. Rainville, and J. M. Toole, 2014: Near-inertial internal wave field in the Canada basin from ice-tethered profilers. J. Phys. Oceanogr.,44, 413–426, doi:10.1175/JPO-D-13-0117.1.

  • Ekman, V. W., 1902: Om jordrotationens inverkan på vindströmmar i hafvet. Nyt Mag. Naturvidensk., 40, 3764.

  • Fer, I., R. Skogseth, and F. Geyer, 2010: Internal waves and mixing in the marginal ice zone near the Yermak Plateau. J. Phys. Oceanogr.,40, 1613–1630, doi:10.1175/2010JPO4371.1.

  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, doi:10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Guthrie, J. D., J. H. Morison, and I. Fer, 2013: Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res.: Oceans,118, 3966–3977, doi:10.1002/jgrc.20294.

  • Halle, C., and R. Pinkel, 2003: Internal wave variability in the Beaufort Sea during the winter of 1993/1994. J. Geophys. Res.,108, 3210, doi:10.1029/2000JC000703.

  • Hutchings, J. K., and I. G. Rigor, 2012: Role of ice dynamics in anomalous ice conditions in the Beaufort Sea during 2006 and 2007. J. Geophys. Res., 117, C00E04, doi:10.1029/2011JC007182.

    • Search Google Scholar
    • Export Citation
  • Hutchings, J. K., P. Heil, A. Steer, and W. D. Hibler, 2012: Subsynoptic scale spatial variability of sea ice deformation in the western Weddell Sea during early summer. J. Geophys. Res., 117, C01002, doi:10.1029/2011JC006961.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1938: A new measure of rank correlation. Biometrika, 30, 8193, doi:10.2307/2332226.

  • Kowalik, Z., and A. Proshutinsky, 1994: The Arctic Ocean tides. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 137–158, doi:10.1029/GM085p0137.

  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, doi:10.1029/JC080i015p01975.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., 1990: Internal waves under the Arctic pack ice during the Arctic Internal Wave Experiment: The coherence structure. J. Geophys. Res., 95, 73477357, doi:10.1029/JC095iC05p07347.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., C. A. Paulson, and J. H. Morison, 1985: Internal waves in the Arctic Ocean: Comparison with lower-latitude observations. J. Phys. Oceanogr., 15, 800809, doi:10.1175/1520-0485(1985)015<0800:IWITAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., C. A. Paulson, and J. H. Morison, 1987: Observations of internal gravity waves under the Arctic pack ice. J. Geophys. Res., 92, 779782, doi:10.1029/JC092iC01p00779.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794, doi:10.1175/2011JPO4581.1.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 1978: A simulation of inertial oscillation in drifting pack ice. Dyn. Atmos. Oceans, 2, 107122, doi:10.1016/0377-0265(78)90005-2.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., and L. H. Kantha, 1989: Generation of internal waves by sea ice. J. Geophys. Res., 94, 32873302, doi:10.1029/JC094iC03p03287.

    • Search Google Scholar
    • Export Citation
  • Morison, J. H., C. E. Long, and M. D. Levine, 1985: Internal wave dissipation under sea ice. J. Geophys. Res., 90, 11 95911 966, doi:10.1029/JC090iC06p11959.

    • Search Google Scholar
    • Export Citation
  • Nansen, F., 1902: The Oceanography of the North Polar Basin. Longmans, Green, and Company, 427 pp.

  • Padman, L., and S. Erofeeva, 2004: A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett., 31, L02303, doi:10.1029/2003GL019003.

    • Search Google Scholar
    • Export Citation
  • Padman, L., A. J. Plueddemann, R. D. Muench, and R. Pinkel, 1992: Diurnal tides near the Yermak Plateau. J. Geophys. Res., 97, 12 63912 652, doi:10.1029/92JC01097.

    • Search Google Scholar
    • Export Citation
  • Partington, K., and C. Bertoia, 1999: Evaluation of Special Sensor Microwave/Imager sea-ice products. U.S. Department of Commerce Paper 58, 3 pp.

  • Pickart, R. S., L. M. Schulze, G. W. K. Moore, M. A. Charette, K. R. Arrigo, G. van Dijken, and S. L. Danielson, 2013a: Long-term trends of upwelling and impacts on primary productivity in the Alaskan Beaufort Sea. Deep-Sea Res. I, 79, 106121, doi:10.1016/j.dsr.2013.05.003.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, and J. T. Mathis, 2013b: Dynamics of upwelling in the Alaskan Beaufort Sea and associated shelf–basin fluxes. Deep-Sea Res. I, 76, 3551, doi:10.1016/j.dsr.2013.01.007.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2005: Near-inertial wave propagation in the western Arctic. J. Phys. Oceanogr., 35, 645665, doi:10.1175/JPO2715.1.

  • Plueddemann, A. J., R. Krishfield, T. Takizawa, K. Hatakeyama, and S. Honjo, 1998: Upper ocean velocities in the Beaufort Gyre. Geophys. Res. Lett., 25, 183186, doi:10.1029/97GL53638.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813816, doi:10.1016/0011-7471(70)90043-4.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. A. Woodgate, 2009: Observations of internal wave generation in the seasonally ice-free Arctic. Geophys. Res. Lett., 36, L23604, doi:10.1029/2009GL041291.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., 1975: The energetics of the plastic deformation of pack ice by ridging. J. Geophys. Res.,80, 4514–4519, doi:10.1029/JC080i033p04514.

  • Schulze, L., and R. Pickart, 2012: Seasonal variation of upwelling in the Alaskan Beaufort Sea: Impact of sea ice cover. J. Geophys. Res.,117, C06022, doi:10.1029/2012JC007985.

  • Shcherbina, A. Y., D. Rudnick, and L. Talley, 2005: Ice-draft profiling from a bottom-mounted ADCP data. J. Atmos. Oceanic Technol., 22, 12491266, doi:10.1175/JTECH1776.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, P. S. Fratantoni, and A. J. Plueddemann, 2008: Western Arctic shelfbreak eddies: Formation and transport. J. Phys. Oceanogr., 38, 16441668, doi:10.1175/2007JPO3829.1.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. Serreze, M. Holland, J. Kay, J. Malanik, and A. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res.,87, 5845–5852, doi:10.1029/JC087iC08p05845.

  • Toole, J. M., M. L. Timmermans, D. K. Perovich, R. A. Krishfield, A. Proshutinsky, and J. A. Richter-Menge, 2010: Influences of the ocean surface mixed layer and thermohaline stratification on Arctic sea ice in the central Canada basin. J. Geophys. Res.,115, C10018, doi:10.1029/2009JC005660.

  • Weingartner, T. J., R. S. Pickart, and M. A. Johnson, 2010: Recommended Physical Oceanographic Studies in the Alaskan Beaufort Sea. U.S. Department of the Interior, Minerals Management Service, Alaska OCS Region, 90 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 11 11 11

Near-Inertial Internal Waves and Sea Ice in the Beaufort Sea

View More View Less
  • 1 Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
  • | 2 School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 3 Oregon State University, Corvallis, Oregon
Restricted access

Abstract

The evolution of the near-inertial internal wavefield from ice-free summertime conditions to ice-covered wintertime conditions is examined using data from a yearlong deployment of six moorings on the Beaufort continental slope from August 2008 to August 2009. When ice is absent, from July to October, energy is efficiently transferred from the atmosphere to the ocean, generating near-inertial internal waves. When ice is present, from November to June, storms also cause near-inertial oscillations in the ice and mixed layer, but kinetic energy is weaker and oscillations are quickly damped. Damping is dependent on ice pack strength and morphology. Decay scales are longer in early winter (November–January) when the new ice pack is weaker and more mobile, decreasing in late winter (February–June) when the ice pack is stronger and more rigid. Efficiency is also reduced, as comparisons of atmospheric energy available for internal wave generation to mixed layer kinetic energies indicate that a smaller percentage of atmospheric energy is transferred to near-inertial motions when ice concentrations are >90%. However, large kinetic energies and shears are observed during an event on 16 December and spectral energy is elevated above Garrett–Munk levels, coinciding with the largest energy flux predicted during the deployment. A significant amount of near-inertial energy is episodically transferred to the internal wave band from the atmosphere even when the ocean is ice covered; however, damping by ice and less efficient energy transfer still leads to low Arctic internal wave energy in the near-inertial band. Increased kinetic energy below 300 m when ice is forming suggests some events may generate internal waves that radiate into the Arctic Ocean interior.

Pacific Marine Environmental Laboratory Contribution Number 4127 and Joint Institute for the Study of the Atmosphere and Ocean Contribution Number 2208.

Corresponding author address: Kim I. Martini, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, 3737 Brooklyn Ave. NE, Box 355672, Seattle, WA 98195-5672. E-mail: kmartini@uw.edu

Abstract

The evolution of the near-inertial internal wavefield from ice-free summertime conditions to ice-covered wintertime conditions is examined using data from a yearlong deployment of six moorings on the Beaufort continental slope from August 2008 to August 2009. When ice is absent, from July to October, energy is efficiently transferred from the atmosphere to the ocean, generating near-inertial internal waves. When ice is present, from November to June, storms also cause near-inertial oscillations in the ice and mixed layer, but kinetic energy is weaker and oscillations are quickly damped. Damping is dependent on ice pack strength and morphology. Decay scales are longer in early winter (November–January) when the new ice pack is weaker and more mobile, decreasing in late winter (February–June) when the ice pack is stronger and more rigid. Efficiency is also reduced, as comparisons of atmospheric energy available for internal wave generation to mixed layer kinetic energies indicate that a smaller percentage of atmospheric energy is transferred to near-inertial motions when ice concentrations are >90%. However, large kinetic energies and shears are observed during an event on 16 December and spectral energy is elevated above Garrett–Munk levels, coinciding with the largest energy flux predicted during the deployment. A significant amount of near-inertial energy is episodically transferred to the internal wave band from the atmosphere even when the ocean is ice covered; however, damping by ice and less efficient energy transfer still leads to low Arctic internal wave energy in the near-inertial band. Increased kinetic energy below 300 m when ice is forming suggests some events may generate internal waves that radiate into the Arctic Ocean interior.

Pacific Marine Environmental Laboratory Contribution Number 4127 and Joint Institute for the Study of the Atmosphere and Ocean Contribution Number 2208.

Corresponding author address: Kim I. Martini, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, 3737 Brooklyn Ave. NE, Box 355672, Seattle, WA 98195-5672. E-mail: kmartini@uw.edu
Save