• Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, doi:10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., J. Marshall, M. Mazloff, and E. Shuckburgh, 2010: Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr., 40, 170184, doi:10.1175/2009JPO4201.1.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and S. Raynaud, 1997: Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27,10381053, doi:10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., M. Arhan, G. Madec, and S. Roche, 1999: Warm water paths in the equatorial Atlantic as diagnosed with a general circulation model. J. Phys. Oceanogr., 29, 27532768, doi:10.1175/1520-0485(1999)029<2753:WWPITE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., J. McWilliams, and P. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264,11231126, doi:10.1126/science.264.5162.1123.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991: Observing the general circulation with floats. Deep-Sea Res., 38A, S531S571, doi:10.1016/S0198-0149(12)80023-9.

  • Dufour, C. O., J. Le Sommer, J. D. Zika, M. Gehlen, J. C. Orr, P. Mathiot, and B. Barnier, 2012: Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode. J. Climate, 25, 69586974, doi:10.1175/JCLI-D-11-00309.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, doi:10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Garabato, A. N., R. Ferrari, and K. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Gent, P., J. Willebrand, T. McDougall, and J. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, J., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc.,96, 157–185, doi:10.1002/qj.49709640802.

  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, doi:10.1175/JPO2980.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Brydent, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 3953, doi:10.1016/0198-0149(89)90017-4.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32,33153327, doi:10.1175/1520-0485(2002)032<3315:CTRCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, and J. H. LaCasce, 2012: Estimating suppression of eddy mixing by mean flows. J. Phys. Oceanogr., 42, 15661576, doi:10.1175/JPO-D-11-0205.1.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J., A. Watson, and C. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer release experiment. Nature, 364, 701703, doi:10.1038/364701a0.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., J. G. Nurser, C. Coward, and B. A. de Cuevas, 2007: Eddy advective and diffusive transports of heat and salt in the Southern Ocean. J. Phys. Oceanogr., 37, 13761393, doi:10.1175/JPO3057.1.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Institut Pierre-Simon Laplace Note du Pole de modélisation 27, 209 pp.

  • Marshall, J., 1981: On the parameterization of geostrophic eddies in the ocean. J. Phys. Oceanogr., 11, 257271, doi:10.1175/1520-0485(1981)011<0257:OTPOGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Olbers, R. Hagen, and D. Wolf-Gladrow, 1993: Potential vorticity constraints on the dynamics and hydrography of the southern ocean. J. Phys. Oceanogr., 23, 465487, doi:10.1175/1520-0485(1993)023<0465:PVCOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821, doi:10.1175/JPO2949.1.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett.,33, L16608, doi:10.1029/2006GL026499.

  • Radko, T., and I. Kamenkovich, 2011: Semi-adiabatic model of the deep stratification and meridional overturning. J. Phys. Oceanogr., 41, 757780, doi:10.1175/2010JPO4538.1.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., I. Kamenkovich, P. Berloff, and L. J. Pratt, 2012: Eddy-induced particle dispersion in the near-surface North Atlantic. J. Phys. Oceanogr., 42, 22062228, doi:10.1175/JPO-D-11-0191.1.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., H. Jones, J. Marshall, and C. Hill, 2009a: Robustness of an effective diffusivity diagnostic in oceanic flows. J. Phys. Oceanogr., 39, 19932009, doi:10.1175/2009JPO4122.1.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., H. Jones, J. Marshall, and C. Hill, 2009b: Understanding the regional variability of eddy diffusivity in the Pacific sector of the Southern Ocean. J. Phys. Oceanogr., 39, 20112023, doi:10.1175/2009JPO4115.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Marshall, 2009: Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr., 39, 5069, doi:10.1175/2008JPO3880.1.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. W. Schmitt, and K. L. Polzin, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 11201123, doi:10.1126/science.264.5162.1120.

    • Search Google Scholar
    • Export Citation
  • Zalesak, S., 1979: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335362, doi:10.1016/0021-9991(79)90051-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 0 0 0

On the Factors Controlling the Eddy-Induced Transport in the Antarctic Circumpolar Current

View More View Less
  • 1 Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
Restricted access

Abstract

This study examines eddy-driven material transport by analyzing trajectories of Lagrangian particles in an idealized model of the Southern Ocean. The main focus is on the direction of the transport in the latitude–depth plane, as well as on the magnitudes of the vertical and meridional particle dispersion. In particular, this transport is along the mean isopycnals in the control simulation, but changes its direction and intensity in a series of sensitivity experiments with artificially modified currents. The main new conclusion is that the direction of the transport is determined by the three-dimensional interplay between the zonal background flow and the transient eddies; the stationary meanders play a secondary role. The key parameter here is the strength of the zonal advection relative to the eddy magnitudes, whereas the mean vertical shear in the zonal velocity is of secondary importance. In particular, stronger mean zonal advection leads to steeper orientation of the eddy fluxes and deeper penetration of tracer anomalies.

Corresponding author address: Romain Pennel, Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: romain.pennel@ensta.org

Abstract

This study examines eddy-driven material transport by analyzing trajectories of Lagrangian particles in an idealized model of the Southern Ocean. The main focus is on the direction of the transport in the latitude–depth plane, as well as on the magnitudes of the vertical and meridional particle dispersion. In particular, this transport is along the mean isopycnals in the control simulation, but changes its direction and intensity in a series of sensitivity experiments with artificially modified currents. The main new conclusion is that the direction of the transport is determined by the three-dimensional interplay between the zonal background flow and the transient eddies; the stationary meanders play a secondary role. The key parameter here is the strength of the zonal advection relative to the eddy magnitudes, whereas the mean vertical shear in the zonal velocity is of secondary importance. In particular, stronger mean zonal advection leads to steeper orientation of the eddy fluxes and deeper penetration of tracer anomalies.

Corresponding author address: Romain Pennel, Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: romain.pennel@ensta.org
Save