• Abernathey, R., J. Marshall, M. Mazloff, and E. Shuckburgh, 2010: Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr., 40, 170184, doi:10.1175/2009JPO4201.1.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., D. Ferreira, and A. Klocker, 2013: Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modell., 72, 116, doi:10.1016/j.ocemod.2013.07.004.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., D. R. Watts, and K. A. Donohue, 2013: Divergent eddy heat fluxes in the Kuroshio Extension at 144°–148°E. Part I: Mean structure. J. Phys. Oceanogr., 43, 15331550, doi:10.1175/JPO-D-12-0221.1.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and H. T. Rossby, 1989: Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data. J. Phys. Oceanogr., 19, 11771190, doi:10.1175/1520-0485(1989)019<1177:EOCFEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., H. T. Rossby, and J. L. Lillibridge, 1985: The Gulf Stream—Barrier or blender? J. Phys. Oceanogr., 15, 2432, doi:10.1175/1520-0485(1985)015<0024:TGSOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., and P. C. Cornillon, 2013: The contribution of eddies to striations in absolute dynamic topography. J. Geophys. Res., 118, 448461, doi:10.1029/2012JC008231.

    • Search Google Scholar
    • Export Citation
  • Cerovecki, I., R. A. Plumb, and W. Heres, 2009: Eddy transport and mixing in a wind- and buoyancy-driven jet on the sphere. J. Phys. Oceanogr., 39, 11331149, doi:10.1175/2008JPO3596.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, R., 2013: Energy pathways and structures of oceanic eddies from the ECCO2 state estimate and simplified models. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 206 pp.

  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., doi:10.1175/JPO-D-14-0009.1, in press.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. Marshall, 2007: Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modell., 18, 122141, doi:10.1016/j.ocemod.2007.03.006.

    • Search Google Scholar
    • Export Citation
  • Davis, R., 1987: Modelling eddy transport of passive tracers. J. Mar. Res., 45, 635666, doi:10.1357/002224087788326803.

  • Davis, R., 1991: Observing the general circulation with floats. Deep-Sea Res., 38A (Suppl. 1), S531S571, doi:10.1016/S0198-0149(12)80023-9.

    • Search Google Scholar
    • Export Citation
  • Donohue, K., and Coauthors, 2008: Program studies of the Kuroshio Extension. Eos, Trans. Amer. Geophys. Union, 89, 161162, doi:10.1029/2008EO170002.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. Webb, 1994: The Deacon cell and other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429442, doi:10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., 2005: What sets the surface eddy mass flux in the Southern Ocean? J. Phys. Oceanogr., 35, 21522166, doi:10.1175/JPO2776.1.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., and R. D. Smith, 1994: Implicit free-surface method for the Bryan-Cox-Semtner ocean model. J. Geophys. Res., 99, 79918014, doi:10.1029/93JC03455.

    • Search Google Scholar
    • Export Citation
  • Eden, C., R. J. Greatbatch, and J. Willebrand, 2007: A diagnosis of thickness fluxes in an eddy-resolving model. J. Phys. Oceanogr., 37, 727742, doi:10.1175/JPO2987.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, doi:10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1970: Transport properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185, doi:10.1002/qj.49709640802.

    • Search Google Scholar
    • Export Citation
  • Greene, A. D., G. G. Sutyrin, and D. R. Watts, 2009: Deep cyclogenesis by synoptic eddies interacting with a seamount. J. Mar. Res., 67, 305322, doi:10.1357/002224009789954775.

    • Search Google Scholar
    • Export Citation
  • Greene, A. D., D. R. Watts, G. G. Sutyrin, and H. Sasaki, 2012: Evidence of vertical coupling between the Kuroshio Extension and topographically controlled deep eddies. J. Mar. Res., 70, 719747, doi:10.1357/002224012806290723.

    • Search Google Scholar
    • Export Citation
  • Griesel, A., S. T. Gille, J. Sprintall, J. L. McClean, J. H. LaCasce, and M. E. Maltrud, 2010: Isopycnal diffusivities in the Antarctic Circumpolar Current inferred from Lagrangian floats in an eddying model. J. Geophys. Res.,115, C06006, doi:10.1029/2009JC005821.

  • Griesel, A., J. L. McClean, S. T. Gille, J. Sprintall, and C. Eden, 2014: Eulerian and Lagrangian isopycnal eddy diffusivities in the Southern Ocean of an eddying model. J. Phys. Oceanogr., 44, 644661, doi:10.1175/JPO-D-13-039.1.

    • Search Google Scholar
    • Export Citation
  • Haller, G., and F. J. Beron-Vera, 2012: Geodesic theory of transport barriers in two-dimensional flows. Physica D, 241, 16801702, doi:10.1016/j.physd.2012.06.012.

    • Search Google Scholar
    • Export Citation
  • Howe, P., K. A. Donohue, and D. R. Watts, 2009: Stream-coordinate structure and variability of the Kuroshio Extension. Deep-Sea Res. I, 56, 10931116, doi:10.1016/j.dsr.2009.03.007.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., and E. J. Metzger, 1998: Bifurcation of the Kuroshio Extension at the Shatsky Rise. J. Geophys. Res., 103, 75497566, doi:10.1029/97JC02723.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and Coauthors, 2009: The Kuroshio Extension and its recirculation gyres. Deep-Sea Res. I, 56, 20882099, doi:10.1016/j.dsr.2009.08.006.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1997: On the parameterization of eddy transfer. Part I. Theory. J. Mar. Res., 55, 11711197, doi:10.1357/0022240973224102.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2013: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, doi:10.1175/JPO-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, and J. H. LaCasce, 2012a: Estimating suppression of eddy mixing by mean flows. J. Phys. Oceanogr., 42, 15661576, doi:10.1175/JPO-D-11-0205.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, J. H. LaCasce, and S. Merrifield, 2012b: Reconciling float-based and tracer-based estimates of eddy diffusivities. J. Mar. Res., 70, 569602, doi:10.1357/002224012805262743.

    • Search Google Scholar
    • Export Citation
  • Koszalka, I. M., and J. H. LaCasce, 2010: Lagrangian analysis by clustering. Ocean Dyn., 60, 957972, doi:10.1007/s10236-010-0306-2.

  • Koszalka, I. M., J. H. LaCasce, M. Andersson, K. A. Orvik, and C. Mauritzen, 2011: Surface circulation in the Nordic Seas from clustered drifters. Deep-Sea Res. I, 58, 468485, doi:10.1016/j.dsr.2011.01.007.

    • Search Google Scholar
    • Export Citation
  • Kouketsu, S., and I. Yasuda, 2008: Unstable frontal waves along the Kuroshio Extension with low-potential vorticity intermediate Oyashio water. J. Phys. Oceanogr., 38, 23082321, doi:10.1175/2008JPO3814.1.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer, 2014: Float-derived isopycnal diffusivities in the DIMES experiment. J. Phys. Oceanogr., 44, 764–780, doi:10.1175/JPO-D-13-0175.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., M. Yaremchuk, H. Mitsudera, I. Nakano, and G. Yuan, 2003: Monitoring the Kuroshio Extension with dynamically constrained synthesis of the acoustic tomography, satellite altimeter and in situ data. J. Oceanogr., 59, 751763, doi:10.1023/B:JOCE.0000009568.06949.c5.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and D. Bercovici, 1992: Particle exchange in an unstable jet. J. Phys. Oceanogr., 22, 15061516, doi:10.1175/1520-0485(1992)022<1506:PEIAUJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., and G. K. Vallis, 1991: Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech., 228, 321342, doi:10.1017/S0022112091002720.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., R. D. Smith, A. J. Semtner, and A. J. Malone, 1998: Global eddy-resolving ocean simulations driven by 1985–1995 atmospheric winds. J. Geophys. Res., 103, 30 82530 853, doi:10.1029/1998JC900013.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., F. O. Bryan, and S. Peacock, 2010: Boundary impulse response functions in a century-long eddying global ocean simulation. Environ. Fluid Mech., 10, 275295, doi:10.1007/s10652-009-9154-3.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, doi:10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821, doi:10.1175/JPO2949.1.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett.,32, L12607, doi:10.1029/2005GL022728.

  • Maximenko, N. A., O. V. Melnichenko, P. P. Niiler, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett.,35, L08603, doi:10.1029/2008GL033267.

  • McClean, J. L., P. M. Poulain, J. W. Pelton, and M. E. Maltrud, 2002: Eulerian and Lagrangian statistics from surface drifters and a high-resolution POP simulation in the North Atlantic. J. Phys. Oceanogr., 32, 24722491, doi:10.1175/1520-0485-32.9.2472.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1984: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 2143, doi:10.1017/S0022112084001750.

    • Search Google Scholar
    • Export Citation
  • Morrow, R., R. Coleman, J. Church, and D. Chelton, 1994: Surface eddy momentum flux and velocity variances in the Southern Ocean from Geosat altimetry. J. Phys. Oceanogr., 24, 20502071, doi:10.1175/1520-0485(1994)024<2050:SEMFAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res.,116, C09019, doi:10.1029/2010JC006818.

  • Oka, E., and B. Qiu, 2012: Progress of North Pacific mode water research in the past decade. J. Oceanogr., 68, 520, doi:10.1007/s10872-011-0032-5.

    • Search Google Scholar
    • Export Citation
  • Owens, W. B., 1984: A synoptic and statistical description of the Gulf Stream and subtropical gyre using SOFAR floats. J. Phys. Oceanogr., 14, 104113, doi:10.1175/1520-0485(1984)014<0104:ASASDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and A. Gnanadesikan, 1998: Transient response in a z-level ocean model that resolves topography with partial cells. Mon. Wea. Rev., 126, 32483270, doi:10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., J. C. McWilliams, M. A. Spall, and R. Ford, 1994: The coherent structures of shallow-water turbulence: Deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation. Chaos, 4, 177186, doi:10.1063/1.166002.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1995: Variability and energetics of the Kuroshio Extension and its recirculation gyre from the first two-year TOPEX data. J. Phys. Oceanogr., 25, 18271842, doi:10.1175/1520-0485(1995)025<1827:VAEOTK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2011: Effect of decadal Kuroshio Extension jet and eddy variability on the modification of North Pacific Intermediate Water. J. Phys. Oceanogr., 41, 503515, doi:10.1175/2010JPO4575.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and P. Hacker, 2007: Effect of mesoscale eddies on Subtropical Mode Water variability from the Kuroshio Extension System Study (KESS). J. Phys. Oceanogr., 37, 9821000, doi:10.1175/JPO3097.1.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and D. P. Marshall, 2000: On the validity of downgradient eddy closures in ocean models. J. Geophys. Res., 105, 28 61328 627, doi:10.1029/1999JC000041.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., I. Kamenkovich, P. Berloff, and L. Pratt, 2012: Eddy-induced particle dispersion in the near-surface Atlantic. J. Phys. Oceanogr., 42, 22062228, doi:10.1175/JPO-D-11-0191.1.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, and S. R. Rintoul, 2011: Mean-flow and topographic control on surface eddy-mixing in the Southern Ocean. J. Mar. Res., 69, 753777, doi:10.1357/002224011799849408.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., H. Jones, J. Marshall, and C. Hill, 2009: Understanding the regional variability of eddy diffusivity in the Pacific sector of the Southern Ocean. J. Phys. Oceanogr., 39, 20112023, doi:10.1175/2009JPO4115.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, doi:10.1357/002224007783649484.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Marshall, 2009: Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr., 39, 5069, doi:10.1175/2008JPO3880.1.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., Y. Nagata, M. Fujimura, T. Iwao, T. Kono, D. Inagake, M. Hirai, and K. Okuda, 1995: North Pacific Intermediate Water in the Kuroshio/Oyashio mixed water region. J. Phys. Oceanogr., 25, 475501, doi:10.1175/1520-0485(1995)025<0475:NPIWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1915: Eddy motion in the atmosphere. Philos. Trans. Roy. Soc. London, A215, 126, doi:10.1098/rsta.1915.0001.

  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20, 196211, doi:10.1112/plms/s2-20.1.196.

  • Thompson, A. F., 2008: The atmospheric ocean: Eddies and jets in the Antarctic Circumpolar Current. Philos. Trans. Roy. Soc. London, 366, 45294541, doi:10.1098/rsta.2008.0196.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257278, doi:10.1175/2009JPO4218.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J. B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Tracey, K. L., D. R. Watts, K. A. Donohue, and H. Ichikawa, 2012: Propagation of Kuroshio Extension meanders between 143° and 149°E. J. Phys. Oceanogr., 42, 581601, doi:10.1175/JPO-D-11-0138.1.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vollmer, L., and C. Eden, 2013: A global map of mesoscale eddy diffusivities based on linear stability analysis. Ocean Modell., 72, 198209, doi:10.1016/j.ocemod.2013.09.006.

    • Search Google Scholar
    • Export Citation
  • Waterman, S. N., and S. R. Jayne, 2011: Eddy-mean flow interaction in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, doi:10.1175/2010JPO4477.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S. N., and B. J. Hoskins, 2013: Eddy shape, orientation, propagation, and mean flow feedback in western boundary current jets. J. Phys. Oceanogr., 43, 16661690, doi:10.1175/JPO-D-12-0152.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S. N., N. G. Hogg, and S. R. Jayne, 2011: Eddy-mean flow interaction in the Kuroshio Extension region. J. Phys. Oceanogr., 41, 11821208, doi:10.1175/2010JPO4564.1.

    • Search Google Scholar
    • Export Citation
  • Wortham, C. J., 2013: A multi-dimensional spectral description of ocean variability with applications. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 184 pp.

  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2010: Toward a midlatitude ocean frequency–wavenumber spectral density and trend determination. J. Phys. Oceanogr., 40, 22642281, doi:10.1175/2010JPO4376.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, G. C., L. J. Pratt, and C. K. R. T. Jones, 2004: Cross-jet Lagrangian transport and mixing in a 2½-layer model. J. Phys. Oceanogr., 34, 19912005, doi:10.1175/1520-0485(2004)034<1991:CLTAMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhurbas, V., and I. S. Oh, 2003: Lateral diffusivity and Lagrangian scales in the Pacific Ocean as derived from drifter data. J. Geophys. Res.,108, 3141, doi:10.1029/2002JC001596.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 3 3 3

Isopycnal Eddy Diffusivities and Critical Layers in the Kuroshio Extension from an Eddying Ocean Model

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 KlimaCampus, University of Hamburg, Germany
Restricted access

Abstract

High spatial resolution isopycnal diffusivities are estimated in the Kuroshio Extension (KE) region (28°–40°N, 120°–190°E) from a global ° Parallel Ocean Program (POP) simulation. The numerical float tracks are binned using a clustering approach. The number of tracks in each bin is thus roughly the same leading to diffusivity estimates that converge better than those in bins defined by a regular geographic grid. Cross-stream diffusivities are elevated in the southern recirculation gyre region, near topographic obstacles and downstream in the KE jet, where the flow has weakened. Along-stream diffusivities, which are much larger than cross-stream diffusivities, correlate well with the magnitudes of eddy velocity. The KE jet suppresses cross-stream mixing only in some longitude ranges. This study estimates the critical layer depth both from linear local baroclinic instability analysis and from eddy phase speeds in the POP model using the Radon transform. The latter is a better predictor of large mixing length in the cross-stream direction. Critical layer theory is most applicable in the intense jet regions away from topography.

Corresponding author address: Ru Chen, Scripps Institution of Oceanography, University of California, San Diego, 8622 Kennel Way, La Jolla, CA 92037. E-mail: ruchen@alum.mit.edu

Abstract

High spatial resolution isopycnal diffusivities are estimated in the Kuroshio Extension (KE) region (28°–40°N, 120°–190°E) from a global ° Parallel Ocean Program (POP) simulation. The numerical float tracks are binned using a clustering approach. The number of tracks in each bin is thus roughly the same leading to diffusivity estimates that converge better than those in bins defined by a regular geographic grid. Cross-stream diffusivities are elevated in the southern recirculation gyre region, near topographic obstacles and downstream in the KE jet, where the flow has weakened. Along-stream diffusivities, which are much larger than cross-stream diffusivities, correlate well with the magnitudes of eddy velocity. The KE jet suppresses cross-stream mixing only in some longitude ranges. This study estimates the critical layer depth both from linear local baroclinic instability analysis and from eddy phase speeds in the POP model using the Radon transform. The latter is a better predictor of large mixing length in the cross-stream direction. Critical layer theory is most applicable in the intense jet regions away from topography.

Corresponding author address: Ru Chen, Scripps Institution of Oceanography, University of California, San Diego, 8622 Kennel Way, La Jolla, CA 92037. E-mail: ruchen@alum.mit.edu
Save