• Alves, J., 2006: Numerical modeling of ocean swell contributions to the global wind-wave climate. Ocean Modell., 11, 98122, doi:10.1016/j.ocemod.2004.11.007.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., and A. H. Perry, 1973: Synoptic Climatology: Methods and Applications. Methuen, 555 pp.

  • Bromirski, P. D., D. R. Cayan, and R. E. Flick, 2005: Wave spectral energy variability in the northeast Pacific. J. Geophys. Res., 110, C03005, doi:10.1029/2004JC002398.

    • Search Google Scholar
    • Export Citation
  • Caires, S., V. R. Swail, and X. L. Wang, 2006: Projection and analysis of extreme wave climate. J. Climate, 19, 55815605, doi:10.1175/JCLI3918.1.

    • Search Google Scholar
    • Export Citation
  • Camus, P., F. J. Mendez, and R. Medina, 2011a: A hybrid efficient method to downscale wave climate to coastal areas. Coastal Eng.,58, 851–862, doi:10.1016/j.coastaleng.2011.05.007.

  • Camus, P., F. J. Mendez, R. Medina, and A. S. Cofiño, 2011b: Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coastal Eng.,58, 453–462, doi:10.1016/j.coastaleng.2011.02.003.

  • Cassou, C., L. Terray, J. W. Hurrell, and C. Deser, 2004: North Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. J. Climate, 17, 10551068, doi:10.1175/1520-0442(2004)017<1055:NAWCRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., 2000: Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans. J. Climate, 13, 17181732, doi:10.1175/1520-0442(2000)013<1718:USOMTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charles, E., D. Idier, J. Thiébot, G. Le Cozannet, R. Pedreros, F. Ardhuin, and S. Planton, 2012: Present wave climate in the Bay of Biscay: Spatiotemporal variability and trends from 1958 to 2001. J. Climate, 25, 20202039, doi:10.1175/JCLI-D-11-00086.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dupuis, H., D. Michel, and A. Sottolichio, 2006: Wave climate evolution in the Bay of Biscay over two decades. J. Mar. Syst., 63, 105114, doi:10.1016/j.jmarsys.2006.05.009.

    • Search Google Scholar
    • Export Citation
  • Gerling, T. W., 1992: Partitioning sequences and arrays of directional spectra into component wave systems. J. Atmos. Oceanic Technol., 9, 444458, doi:10.1175/1520-0426(1992)009<0444:PSAAOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gutierrez, J. M., R. Cano, A. S. Cofiño, and C. Sordo, 2005: Analysis and downscaling multi-model seasonal forecast in Peru using self-organizing maps. Tellus, 57A, 435447, doi:10.1111/j.1600-0870.2005.00128.x.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., R. Tibshirani, and J. Friedman, 2001: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 533 pp.

  • Hurrell, J. W., and C. Deser, 2009: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 78, 2841, doi:10.1016/j.jmarsys.2008.11.026.

    • Search Google Scholar
    • Export Citation
  • Izaguirre, C., M. Menendez, P. Camus, F. J. Mendez, R. Minguez, and I. J. Losada, 2012: Exploring interannual variability of the extreme wave climate in the northeast Atlantic Ocean. Ocean Modell., 59–60, 3140, doi:10.1016/j.ocemod.2012.09.007.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., and P. Viterbo, 1996: Ocean waves and the atmospheric climate. J. Climate,9, 1269–1287, doi:10.1175/1520-0442(1996)009<1269:OWATAC>2.0.CO;2.

  • Le Cozannet, G., S. Lecacheux, E. Delvallee, N. Desramaut, C. Oliveros, and R. Pedreros, 2011: Teleconnection pattern influence on sea-wave climate in the Bay of Biscay. J. Climate, 24, 641652, doi:10.1175/2010JCLI3589.1.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. C. D. Mobley, Ed., Elsevier, 401 pp.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Semedo, A., S. K. Rutgersson, and A. Sterl, 2011: A global view on the wind sea and swell climate and variability from ERA-40. J. Climate, 24, 14611479, doi:10.1175/2010JCLI3718.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Wang, D. W., and P. A. Hwang, 2001: An operational method for separating wind sea and swell from ocean wave spectra. J. Atmos. Oceanic Technol., 18, 20522062, doi:10.1175/1520-0426(2001)018<2052:AOMFSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and V. R. Swail, 2001: Changes in extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate, 14, 22042221, doi:10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and V. R. Swail, 2002: Trends of Atlantic wave extremes as simulated in a 40-yr wave hindcast using kinematically reanalyzed wind fields. J. Climate, 15, 10201035, doi:10.1175/1520-0442(2002)015<1020:TOAWEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and V. R. Swail, 2006: Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP–NCAR reanalysis for 1958–2001. J. Climate,19, 3145–3166, doi:10.1175/JCLI3781.1.

  • Wang, X. L., Y. Feng, and V. R. Swail, 2012: North Atlantic wave height trends as reconstructed from the 20th century reanalysis. Geophys. Res. Lett., 39, L18705, doi:10.1029/2012GL053381.

    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., P. G. Challenor, and P. D. Cotton, 2002: Variability and predictability of the North Atlantic wave climate. J. Geophys. Res., 107, 3145, doi:10.1029/2001JC001124.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 3 3 3

Spectral Ocean Wave Climate Variability Based on Atmospheric Circulation Patterns

View More View Less
  • 1 Environmental Hydraulics Institute “IH Cantabria,” Universidad de Cantabria, Cantabria, Spain
Restricted access

Abstract

Traditional approaches for assessing wave climate variability have been broadly focused on aggregated or statistical parameters such as significant wave height, wave energy flux, or mean wave direction. These studies, although revealing the major general modes of wave climate variability and trends, do not take into consideration the complexity of the wind-wave fields. Because ocean waves are the response to both local and remote winds, analyzing the directional full spectra can shed light on atmospheric circulation not only over the immediate ocean region, but also over a broad basin scale. In this work, the authors use a pattern classification approach to explore wave climate variability in the frequency–direction domain. This approach identifies atmospheric circulation patterns of the sea level pressure from the 31-yr long Climate Forecast System Reanalysis (CFSR) and wave spectral patterns of two selected buoys in the North Atlantic, finding one-to-one relations between each synoptic pattern (circulation type) and each spectral wave energy distribution (spectral type). Even in the absence of long-wave records, this method allows for the reconstruction of long-term wave spectra to cover variability at several temporal scales: daily, monthly, seasonal, interannual, decadal, long-term trends, and future climate change projections.

Corresponding author address: Iñigo J. Losada, Environmental Hydraulics Institute, IH Cantabria, Universidad de Cantabria, C/Isabel Torres 15, 39011, Cantabria, Spain. E-mail: losadai@unican.es

Abstract

Traditional approaches for assessing wave climate variability have been broadly focused on aggregated or statistical parameters such as significant wave height, wave energy flux, or mean wave direction. These studies, although revealing the major general modes of wave climate variability and trends, do not take into consideration the complexity of the wind-wave fields. Because ocean waves are the response to both local and remote winds, analyzing the directional full spectra can shed light on atmospheric circulation not only over the immediate ocean region, but also over a broad basin scale. In this work, the authors use a pattern classification approach to explore wave climate variability in the frequency–direction domain. This approach identifies atmospheric circulation patterns of the sea level pressure from the 31-yr long Climate Forecast System Reanalysis (CFSR) and wave spectral patterns of two selected buoys in the North Atlantic, finding one-to-one relations between each synoptic pattern (circulation type) and each spectral wave energy distribution (spectral type). Even in the absence of long-wave records, this method allows for the reconstruction of long-term wave spectra to cover variability at several temporal scales: daily, monthly, seasonal, interannual, decadal, long-term trends, and future climate change projections.

Corresponding author address: Iñigo J. Losada, Environmental Hydraulics Institute, IH Cantabria, Universidad de Cantabria, C/Isabel Torres 15, 39011, Cantabria, Spain. E-mail: losadai@unican.es
Save