• Batchelor, G. K., 1953: The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.

  • Canuto, V. M., Y. Cheng, and A. M. Howard, 2008: A new model for double diffusion + turbulence. Geophys. Res. Lett., 35, L02613, doi:10.1029/2007GL032580.

    • Search Google Scholar
    • Export Citation
  • Caplan, S., 2008: Microstructure signatures of equilibrium double-diffusive convection. MS thesis, Dept. of Oceanography, Naval Postgraduate School, 57 pp.

  • Carpenter, J. R., T. Sommer, and A. Wüest, 2012: Simulations of a double-diffusive interface in the diffusive convection regime. J. Fluid Mech., 711, 411436, doi:10.1017/jfm.2012.399.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1994: Diapycnal mixing in the ocean: The Osborn–Cox model. J. Phys. Oceanogr., 24, 25602576, doi:10.1175/1520-0485(1994)024<2560:DMITOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flanagan, J. D., A. S. Lefler, and T. Radko, 2013: Heat transport through diffusive interfaces. Geophys. Res. Lett., 40, 2466–2470, doi:10.1002/grl.50440.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in a thermocline: A review. J. Geophys. Res., 92, 52495286, doi:10.1029/JC092iC05p05249.

  • Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, doi:10.1017/S0022112061000317.

  • Itsweire, E. C., J. R. Koseff, D. A. Briggs, and J. H. Ferziger, 1993: Turbulence in stratified shear flows: Implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr., 23, 15081522, doi:10.1175/1520-0485(1993)023<1508:TISSFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelley, D. E., 1984: Effective diffusivities within oceanic staircases. J. Geophys. Res., 89, 10 48410 488, doi:10.1029/JC089iC06p10484.

    • Search Google Scholar
    • Export Citation
  • Kelley, D. E., 1990: Fluxes through diffusive staircases: A new formulation. J. Geophys. Res., 95, 33653371, doi:10.1029/JC095iC03p03365.

    • Search Google Scholar
    • Export Citation
  • Kimura, S., W. Smyth, and E. Kunze, 2011: Turbulence in a sheared, salt-fingering-favorable environment: Anisotropy and effective diffusivities. J. Phys. Oceanogr., 41, 11441159, doi:10.1175/2011JPO4543.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1994: A proposed flux constraint for salt fingers in shear. J. Mar. Res., 52, 9991016, doi:10.1357/0022240943076867.

  • Marmorino, G. O., and D. R. Caldwell, 1976: Heat and salt transport through a diffusive thermohaline interface. Deep-Sea Res. Oceanogr. Abstr., 23, 5967, doi:10.1016/0011-7471(76)90808-1.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., 1990: Evolution of the Southern Ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation. J. Geophys. Res., 95, 11 64111 654, doi:10.1029/JC095iC07p11641.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous flows. J. Fluid Mech., 10, 496508, doi:10.1017/S0022112061000305.

  • Newell, T. A., 1984: Characteristics of a double-diffusive interface at high density stability ratios. J. Fluid Mech., 149, 385401, doi:10.1017/S0022112084002718.

    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1988: Estimates of mixing inferred from temperature and velocity microstructure. Small-Scale Turbulence and Mixing in the Ocean, J. Nihoul and B. Namart, Eds., Elsevier, 239–248.

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345, doi:10.1080/03091927208236085.

  • Padman, L., 1994: Momentum fluxes through sheared oceanic thermohaline steps. J. Geophys. Res., 99, 22 49122 499, doi:10.1029/94JC01741.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and I. S. F. Jones, 1985: Richardson number statistics in the seasonal thermocline. J. Phys. Oceanogr., 15, 844854, doi:10.1175/1520-0485(1985)015<0844:RNSITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Radko, T., 2003: A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech., 497, 365380, doi:10.1017/S0022112003006785.

    • Search Google Scholar
    • Export Citation
  • Radko, T., 2008: The double-diffusive modon. J. Fluid Mech., 609, 5985, doi:10.1017/S0022112008002127.

  • Radko, T., 2013: Double-Diffusive Convection. Cambridge University Press, 368 pp.

  • Radko, T., and M. E. Stern, 2011: Finescale instabilities of the double-diffusive shear flow. J. Phys. Oceanogr., 41, 571585, doi:10.1175/2010JPO4459.1.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and D. P. Smith, 2012: Equilibrium transport in double-diffusive convection. J. Fluid Mech., 692, 527, doi:10.1017/jfm.2011.343.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1920: The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. London, 97A, 354373, doi:10.1098/rspa.1920.0039.

    • Search Google Scholar
    • Export Citation
  • Shaw, W., and T. Stanton, 2014: Dynamic and double-diffusive instabilities in a weak pycnocline. Part I: Observations of heat flux and diffusivity in the vicinity of Maud Rise, Weddell Sea. J. Phys. Oceanogr., 44, 19731991, doi:10.1175/JPO-D-13-042.1.

    • Search Google Scholar
    • Export Citation
  • Stellmach, S., A. Traxler, P. Garaud, N. Brummell, and T. Radko, 2011: Dynamics of fingering convection. Part 2: The formation of thermohaline staircases. J. Fluid Mech., 677, 554571, doi:10.1017/jfm.2011.99.

    • Search Google Scholar
    • Export Citation
  • Stern, M. E., T. Radko, and J. Simeonov, 2001: Salt fingers in an unbounded thermocline. J. Mar. Res., 59, 355390, doi:10.1357/002224001762842244.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and R. W. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic tracer release experiment. J. Phys. Oceanogr., 29, 14041424, doi:10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, J., 1988: The fluxes across a diffusive interface at low values of the density ratio. Deep-Sea Res., 35, 555567, doi:10.1016/0198-0149(88)90131-8.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1965: The coupled turbulent transports of salt and heat across a sharp density interface. Int. J. Heat Mass Transfer, 8, 759767, doi:10.1016/0017-9310(65)90022-0.

    • Search Google Scholar
    • Export Citation
  • Wells, M. G., and R. W. Griffiths, 2003: Interaction of salt finger convection with intermittent turbulence. J. Geophys. Res., 108, 3080, doi:10.1029/2002JC001427.

    • Search Google Scholar
    • Export Citation
  • You, Y., 2002: A global ocean climatological atlas of the Turner angle: Implications for double-diffusion and water-mass structure. Deep-Sea Res., 49, 20752093, doi:10.1016/S0967-0637(02)00099-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 9 9 9

Dynamic and Double-Diffusive Instabilities in a Weak Pycnocline. Part II: Direct Numerical Simulations and Flux Laws

View More View Less
  • 1 Department of Oceanography, Naval Postgraduate School, Monterey, California
Restricted access

Abstract

This study examines the interaction of diffusive convection and shear through a series of 2D and 3D direct numerical simulations (DNS). The model employed is based on the Boussinesq equations of motion with oscillating shear represented by a forcing term in the momentum equation. This study calculates thermal diffusivities for a wide range of Froude numbers and density ratios and compares the results with those from the analysis of observational data gathered during a 2005 expedition to the eastern Weddell Sea. The patterns of layering and the strong dependence of thermal diffusivity on the density ratio described here are in agreement with observations. Additionally, the authors evaluate salinity fluxes that are inaccessible from field data and formulate a parameterization of buoyancy transport. The relative significance of double diffusion and shear is quantified through comparison of density fluxes, efficiency factor, and dissipation ratio for the regimes with/without diffusive convection. This study assesses the accuracy of the thermal production dissipation and turbulent kinetic energy balances, commonly used in microstructure-based observational studies, and quantifies the length of the averaging period required for reliable statistics and the spatial variability of heat flux.

Corresponding author address: J. D. Flanagan, Graduate School of Engineering and Applied Sciences, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943. E-mail: jdflanag@nps.edu

Abstract

This study examines the interaction of diffusive convection and shear through a series of 2D and 3D direct numerical simulations (DNS). The model employed is based on the Boussinesq equations of motion with oscillating shear represented by a forcing term in the momentum equation. This study calculates thermal diffusivities for a wide range of Froude numbers and density ratios and compares the results with those from the analysis of observational data gathered during a 2005 expedition to the eastern Weddell Sea. The patterns of layering and the strong dependence of thermal diffusivity on the density ratio described here are in agreement with observations. Additionally, the authors evaluate salinity fluxes that are inaccessible from field data and formulate a parameterization of buoyancy transport. The relative significance of double diffusion and shear is quantified through comparison of density fluxes, efficiency factor, and dissipation ratio for the regimes with/without diffusive convection. This study assesses the accuracy of the thermal production dissipation and turbulent kinetic energy balances, commonly used in microstructure-based observational studies, and quantifies the length of the averaging period required for reliable statistics and the spatial variability of heat flux.

Corresponding author address: J. D. Flanagan, Graduate School of Engineering and Applied Sciences, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943. E-mail: jdflanag@nps.edu
Save