• Alford, M., and R. Pinkel, 2001: Observations of overturning in the thermocline: The context of ocean mixing. J. Phys. Oceanogr., 31, 805832, doi:10.1175/1520-0485(2000)030<0805:OOOITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, S. A., 1992: Shear, strain, and thermocline vertical fine structure in the upper ocean. Ph.D. thesis, University of California, San Diego, 173 pp.

  • Briscoe, M. G., 1975: Preliminary results from the tri-moored Internal Wave Experiment (IWEX). J. Geophys. Res., 80, 38723884, doi:10.1029/JC080i027p03872.

    • Search Google Scholar
    • Export Citation
  • Desaubies, Y. J. F., and M. C. Gregg, 1981: Reversible and irreversible finestructure. J. Phys. Oceanogr., 11, 541556, doi:10.1175/1520-0485(1981)011<0541:RAIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Desaubies, Y. J. F., and W. K. Smith, 1982: Statistics of Richardson number and instability in oceanic internal waves. J. Phys. Oceanogr., 12, 12451259, doi:10.1175/1520-0485(1982)012<1245:SORNAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ertel, H., 1942: Ein neuer hydrodynamischer Wirbelsatz. Meteor. Z., 59, 277281.

  • Fofonoff, N. P., 1969: Spectral characteristics of internal waves in the ocean. Deep-Sea Res., 16 (Suppl.), 5871.

  • Garrett, C. J. R., and W. H. Munk, 1971: Internal wave spectra in the presence of finestructure. J. Phys. Oceanogr., 1, 196202, doi:10.1175/1520-0485(1971)001<0196:IWSITP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and W. H. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, doi:10.1080/03091927208236082.

    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and W. H. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, doi:10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., L. R. M. Maas, and H. van Haren, 2013: A note on the role of mean flows in Doppler shifted frequencies. J. Phys. Oceanogr., 43, 432441, doi:10.1175/JPO-D-12-090.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1983: A conjecture relating oceanic internal waves and small-scale processes. Atmos.–Ocean, 21, 107122, doi:10.1080/07055900.1983.9649159.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., and Y. J. F. Desaubies, 1977: Discrimination between internal waves and temperature finestructure. J. Phys. Oceanogr., 7, 2232, doi:10.1175/1520-0485(1977)007<0022:DBIWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and T. B. Sanford, 1993: Submesoscale dynamics near a seamount. Part I: Measurements of Ertel vorticity. J. Phys. Oceanogr., 23, 25672588, doi:10.1175/1520-0485(1993)023<2567:SDNASP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., M. G. Briscoe, and A. J. Williams, 1990: Interpreting shear and strain finestructure from a neutrally buoyant float. J. Geophys. Res., 95, 18 11118 125, doi:10.1029/JC095iC10p18111.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, doi:10.1029/JC080i015p01975.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and P. Muller, 1992: Consistency relations for gravity and vortical modes in the ocean. Deep-Sea Res., 39, 15951612, doi:10.1016/0198-0149(92)90050-4.

    • Search Google Scholar
    • Export Citation
  • Marmorino, G. O., L. J. Rosenblum, and C. L. Trump, 1987: Finescale temperature variability: The influence of near-inertial waves. J. Geophys. Res., 92, 13 04913 062, doi:10.1029/JC092iC12p13049.

    • Search Google Scholar
    • Export Citation
  • McKean, R. S., 1974: Interpretation of internal wave measurements in the presence of fine structure. J. Phys. Oceanogr., 4, 200213, doi:10.1175/1520-0485(1974)004<0200:IOIWMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muller, P., 1984: Small-scale vortical motions. Internal Gravity Waves and Small-Scale Turbulence: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 249–262.

  • Muller, P., 1988: Vortical motions. Small-Scale Turbulence and Mixing in the Ocean, J. C. J. Nihoul and B. M. Jamart, Eds., Elsevier, 285–301.

  • Muller, P., R.-C. Lein, and R. G. Williams, 1988: Estimates of potential vorticity at small scales in the ocean. J. Phys. Oceanogr., 18, 401416, doi:10.1175/1520-0485(1988)018<0401:EOPVAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., The MIT Press, 264–291.

  • Orlanski, I., and K. Bryan, 1969: Formation of the thermocline step structure by large-amplitude internal gravity waves. J. Geophys. Res., 74, 69756983, doi:10.1029/JC074i028p06975.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345, doi:10.1080/03091927208236085.

  • Phillips, O. M., 1971: On spectra measured in an undulating layered medium. J. Phys. Oceanogr., 1, 16, doi:10.1175/1520-0485(1971)001<0001:OSMIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 1975: Upper ocean internal wave observations from FLIP. J. Geophys. Res., 80, 38923910, doi:10.1029/JC080i027p03892.

  • Pinkel, R., 1979: Observations of strongly nonlinear internal motion in the open sea using a range-gated Doppler sonar. J. Phys. Oceanogr., 9, 675686, doi:10.1175/1520-0485(1979)009<0675:OOSNIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 1981: On the use of Doppler sonar for internal wave measurements. Deep-Sea Res., 28A, 269289, doi:10.1016/0198-0149(81)90067-4.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 1983: Doppler sonar observations of internal waves: Wave-field structure. J. Phys. Oceanogr., 13, 804815, doi:10.1175/1520-0485(1983)013<0804:DSOOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2008: Advection, phase distortion, and the frequency spectrum of finescale fields in the sea. J. Phys. Oceanogr., 38, 291313, doi:10.1175/2007JPO3559.1.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., and S. A. Anderson, 1997: Shear, strain, and Richardson number variations in the thermocline. Part I: Statistical description. J. Phys. Oceanogr., 27, 264281, doi:10.1175/1520-0485(1997)027<0264:SSARNV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., E. Kunze, J. M. Toole, and R. W. Schmitt, 2003: The partition of finescale energy into internal waves and subinertial motions. J. Phys. Oceanogr., 33, 234248, doi:10.1175/1520-0485(2003)033<0234:TPOFEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, doi:10.1175/JPO2889.1.

    • Search Google Scholar
    • Export Citation
  • Sherman, J. T., and R. Pinkel, 1991: Estimates of the vertical wavenumber–frequency spectra of vertical shear and strain. J. Phys. Oceanogr., 21, 292303, doi:10.1175/1520-0485(1991)021<0292:EOTVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, O. M., and R. Pinkel, 2013: Subharmonic energy transfer from the semidiurnal tide to near-diurnal motions at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 43, 766789, doi:10.1175/JPO-D-12-0141.1.

    • Search Google Scholar
    • Export Citation
  • Vorhis, A. D., 1968: Measurement of vertical motion and the partition of energy in New England slope water. Deep-Sea Res. Oceanogr. Abstr., 15, 599609, doi:10.1016/0011-7471(68)90065-X.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1968: Wave-induced shear instability in the summer thermocline. J. Fluid Mech., 32, 791800, doi:10.1017/S0022112068001035.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 9 9 9

Vortical and Internal Wave Shear and Strain

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
Restricted access

Abstract

Depth–time records of isopycnal vertical strain have been collected from intensive CTD profiling programs on the research platform (R/P) Floating Instrument Platform (FLIP). The associated vertical wavenumber frequency spectrum of strain, when viewed in an isopycnal-following frame, displays a clear spectral gap at low vertical wavenumber, separating the quasigeostrophic (vortical) strain field and the superinertial internal wave continuum. This gap enables both model and linear-filter-based methods for separating the submesoscale and internal wave strain fields. These fields are examined independently in six field programs spanning the period 1983–2002. Vortical and internal wave strain variances are often comparable in the upper thermocline, of order 0.2. However, vortical strain tends to decrease with increasing depth (decreasing buoyancy frequency as ~(N2)1/2, while internal wave strain variance increases as ~(N2)−1/2, exceeding vortical variance by a factor of 5–10 at depths below 500 m.

In contrast to strain, the low-frequency spectral gap in the shear spectrum is largely obscured by Doppler-smeared near-inertial motions. The vertical wavenumber spectrum of anticyclonic shear exceeds the cyclonic shear and strain spectra at all scales greater than 10 m. The frequency spectrum of anticyclonic shear exceeds that of both cyclonic shear and strain to frequencies of 0.5 cph, emphasizing the importance of lateral Doppler shifting of near-inertial shear.

The limited Doppler shifting of the vortical strain field implies surprisingly small submesoscale aspect ratios: kH/kz ~ 0.001, Burger numbers Br = kH N/kzf ~ 0.1. Submesoscale potential vorticity is dominated by vertical straining rather than the vertical component of relative vorticity. The inferred rms fluctuation of fluid vorticity is far less for the vortical field than for the internal wavefield.

Corresponding author address: Robert Pinkel, Scripps Institution of Oceanography, 9500 Gillman Drive, La Jolla, CA 92093-0213. E-mail: rpinkel@ucsd.edu

Abstract

Depth–time records of isopycnal vertical strain have been collected from intensive CTD profiling programs on the research platform (R/P) Floating Instrument Platform (FLIP). The associated vertical wavenumber frequency spectrum of strain, when viewed in an isopycnal-following frame, displays a clear spectral gap at low vertical wavenumber, separating the quasigeostrophic (vortical) strain field and the superinertial internal wave continuum. This gap enables both model and linear-filter-based methods for separating the submesoscale and internal wave strain fields. These fields are examined independently in six field programs spanning the period 1983–2002. Vortical and internal wave strain variances are often comparable in the upper thermocline, of order 0.2. However, vortical strain tends to decrease with increasing depth (decreasing buoyancy frequency as ~(N2)1/2, while internal wave strain variance increases as ~(N2)−1/2, exceeding vortical variance by a factor of 5–10 at depths below 500 m.

In contrast to strain, the low-frequency spectral gap in the shear spectrum is largely obscured by Doppler-smeared near-inertial motions. The vertical wavenumber spectrum of anticyclonic shear exceeds the cyclonic shear and strain spectra at all scales greater than 10 m. The frequency spectrum of anticyclonic shear exceeds that of both cyclonic shear and strain to frequencies of 0.5 cph, emphasizing the importance of lateral Doppler shifting of near-inertial shear.

The limited Doppler shifting of the vortical strain field implies surprisingly small submesoscale aspect ratios: kH/kz ~ 0.001, Burger numbers Br = kH N/kzf ~ 0.1. Submesoscale potential vorticity is dominated by vertical straining rather than the vertical component of relative vorticity. The inferred rms fluctuation of fluid vorticity is far less for the vortical field than for the internal wavefield.

Corresponding author address: Robert Pinkel, Scripps Institution of Oceanography, 9500 Gillman Drive, La Jolla, CA 92093-0213. E-mail: rpinkel@ucsd.edu
Save