• Abraham, J. P., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, doi:10.1002/rog.20022.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MIT GCM. Proc. ECMWF Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Shinfield Park, Reading, United Kingdom, ECMWF, 139–150. [Available online at http://old.ecmwf.int/publications/library/do/references/show?id=86400.]

  • Balmaseda, M. A., K. E. Trenberth, and E. Kallen, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, doi:10.1002/grl.50382.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., M. J. Griffiths, A. M. Lavin, R. C. Millard, G. Parrilla, and W. M. Smethie, 1996: Decadal changes in water mass characteristics at 24°N in the subtropical North Atlantic Ocean. J. Climate, 9, 31623186, doi:10.1175/1520-0442(1996)009<3162:DCIWMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and F. J. Wentz, 2005: Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull. Amer. Meteor. Soc., 86, 10971115, doi:10.1175/BAMS-86-8-1097.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2011: Revisiting the earth's sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Jode, G., 1578: Speculum Orbis Terrarum. Theatrum Orbis Terrarum, 277 pp.

  • Emile-Geay, J., and G. Madec, 2009: Geothermal heating, diapycnal mixing and the abyssal circulation. Ocean Sci., 5, 203217, doi:10.5194/os-5-203-2009.

    • Search Google Scholar
    • Export Citation
  • Fenty, I. G., and P. Heimbach, 2013: Coupled sea ice-ocean-state estimation in the Labrador Sea and Baffin Bay. J. Phys. Oceanogr., 43, 884904, doi:10.1175/JPO-D-12-065.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910, doi:10.1175/JPO2785.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 14311435, doi:10.1126/science.1110252.

    • Search Google Scholar
    • Export Citation
  • Heimbach, P., C. Wunsch, R. M. Ponte, G. Forget, C. Hill, and J. Utke, 2011: Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport magnitudes: Toward observing system design. Deep-Sea Res. II, 58, 18581879, doi:10.1016/j.dsr2.2010.10.065.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., and C. Wunsch, 2010: Paleophysical oceanography with an emphasis on transport rates. Annu. Rev. Mar. Sci., 2, 134, doi:10.1146/annurev-marine-120308-081056.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., R. S. Pickart, and R. C. Millard, 1999: Long-term hydrographic changes at 52 and 66°W in the North Atlantic Subtropical Gyre & Caribbean. Deep-Sea Res. II, 46, 245278, doi:10.1016/S0967-0645(98)00102-7.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Kouketsu, S., and Coauthors, 2011: Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res., 116, C03012, doi:10.1029/2010JC006464.

    • Search Google Scholar
    • Export Citation
  • Ljungqvist, F. C., 2010: A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geogr. Ann.,92, 339–351, doi:10.1111/j.1468-0459.2010.00399.x.

  • Losch, M., D. Menemenlis, J. M. Campin, P. Heimbach, and C. Hill, 2010: On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modell., 33, 129144, doi:10.1016/j.ocemod.2009.12.008.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., S. A. Good, V. V. Gouretski, M. Ishii, G. C. Johnson, M. D. Palmer, D. M. Smith, and J. K. Willis, 2010: Robust warming of the global upper ocean. Nature, 465, 334337, doi:10.1038/nature09043.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and Coauthors, 2005: NASA supercomputer improves prospects for ocean climate research. Eos, Trans. Amer. Geophys. Union,86, 89–96, doi:10.1029/2005EO090002.

  • Myhre, G., and Coauthors, 2014: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Pacanowski, R. C., and S. M. Griffies, 2000: The Modular Ocean Model (MOM) 3 manual. Geophysical Fluid Dynamics Laboratory (GFDL) Tech. Doc., 680 pp.

  • Pollack, H. N., S. J. Hurtrer, and J. R. Johnson, 1993: Heat flow from the earth’ s interior: Analysis of the global data set. Rev. Geophys., 31, 267280, doi:10.1029/93RG01249.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 2012: An assessment of deep steric height variability over the global ocean. Geophys. Res. Lett., 39, L04601, doi:10.1029/2011GL050681.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26, 61056122, doi:10.1175/JCLI-D-12-00834.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and C. Wunsch, 1984: Apparent change in the climatic state of the deep North Atlantic Ocean. Nature, 307, 447450, doi:10.1038/307447a0.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2009: The Argo program observing the global ocean with profiling floats. Oceanography, 22, 3443, doi:10.5670/oceanog.2009.36.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., W. J. Gould, and J. Gilson, 2012: 135 years of global ocean warming between the Challenger expedition and the Argo programme. Nat. Climate Change, 2, 425428, doi:10.1038/nclimate1461.

    • Search Google Scholar
    • Export Citation
  • Roquet, F., and Coauthors, 2013: Hydrographic data collected by seals significantly reduce the observational gap in the Southern Ocean. Geophys. Res. Lett., 40, 61766180, doi:10.1002/2013GL058304.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2007: Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE) Volume 2: Pacific Ocean. M. Sparrow, P. Chapman, and J. Gould, Eds., WOCE International Project Office, Southampton, United Kingdom, 20 pp., plus plates. [Available online at http://www-pord.ucsd.edu/whp_atlas/pacific_index.html.]

  • Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, 2004: GRACE measurements of mass variability in the earth system. Science, 305, 503505, doi:10.1126/science.1099192.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and P.-Y. Le Traon, 2011: How well can we derive global ocean indicators from Argo data? Ocean Sci., 7, 783791, doi:10.5194/os-7-783-2011.

    • Search Google Scholar
    • Export Citation
  • Worthington, L. V., 1981: The water masses of the world ocean: Some results of a fine-scale census. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., MIT Press, 42–69.

  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, doi:10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197208, doi:10.1016/j.physd.2006.09.040.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2008: How long to ocean tracer and proxy equilibrium? Quat. Sci. Rev., 27, 637651, doi:10.1016/j.quascirev.2008.01.006.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013a: Dynamically and kinematically consistent global ocean circulation state estimates with land and sea ice. Ocean Circulation and Climate, 2nd ed. J. C. G. Siedler, W. J. Gould, and S. M. Griffies, Eds., Elsevier, 553–579.

  • Wunsch, C., and P. Heimbach, 2013b: Two decades of the Atlantic meridional overturning circulation: Anatomy, variations, extremes, prediction, and overcoming its limitations. J. Climate, 26, 71677186, doi:10.1175/JCLI-D-12-00478.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 28
PDF Downloads 9 9 9

Bidecadal Thermal Changes in the Abyssal Ocean

View More View Less
  • 1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
  • | 2 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
Restricted access

Abstract

A dynamically consistent state estimate is used for the period 1992–2011 to describe the changes in oceanic temperatures and heat content, with an emphasis on determining the noise background in the abyssal (below 2000 m) depths. Interpretation requires close attention to the long memory of the deep ocean, implying that meteorological forcing of decades to thousands of years ago should still be producing trendlike changes in abyssal heat content. Much of the deep-ocean volume remained unobserved. At the present time, warming is seen in the deep western Atlantic and Southern Oceans, roughly consistent with those regions of the ocean expected to display the earliest responses to surface disturbances. Parts of the deeper ocean, below 3600 m, show cooling. Most of the variation in the abyssal Pacific Ocean is comparatively featureless, consistent with the slow, diffusive approach to a steady state expected there. In the global average, changes in heat content below 2000 m are roughly 10% of those inferred for the upper ocean over the 20-yr period. A useful global observing strategy for detecting future change has to be designed to account for the different time and spatial scales manifested in the observed changes. If the precision estimates of heat content change are independent of systematic errors, determining oceanic heat uptake values equivalent to 0.1 W m−2 is possibly attainable over future bidecadal periods.

Denotes Open Access content.

Corresponding author address: Carl Wunsch, 26 Oxford Street, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138. E-mail: cwunsch@fas.harvard.edu

Abstract

A dynamically consistent state estimate is used for the period 1992–2011 to describe the changes in oceanic temperatures and heat content, with an emphasis on determining the noise background in the abyssal (below 2000 m) depths. Interpretation requires close attention to the long memory of the deep ocean, implying that meteorological forcing of decades to thousands of years ago should still be producing trendlike changes in abyssal heat content. Much of the deep-ocean volume remained unobserved. At the present time, warming is seen in the deep western Atlantic and Southern Oceans, roughly consistent with those regions of the ocean expected to display the earliest responses to surface disturbances. Parts of the deeper ocean, below 3600 m, show cooling. Most of the variation in the abyssal Pacific Ocean is comparatively featureless, consistent with the slow, diffusive approach to a steady state expected there. In the global average, changes in heat content below 2000 m are roughly 10% of those inferred for the upper ocean over the 20-yr period. A useful global observing strategy for detecting future change has to be designed to account for the different time and spatial scales manifested in the observed changes. If the precision estimates of heat content change are independent of systematic errors, determining oceanic heat uptake values equivalent to 0.1 W m−2 is possibly attainable over future bidecadal periods.

Denotes Open Access content.

Corresponding author address: Carl Wunsch, 26 Oxford Street, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138. E-mail: cwunsch@fas.harvard.edu
Save