• Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278, doi:10.1175/JPO-D-11-023.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425, doi:10.1017/S0022112009006375.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., D. R. Watts, and K. A. Donohue, 2013: Divergent eddy heat fluxes in the Kuroshio extension at 144°–148°E. Part I: Mean structure. J. Phys. Oceanogr., 43, 15331550, doi:10.1175/JPO-D-12-0221.1.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., 2008: An energy-constrained parameterization of eddy buoyancy flux. J. Phys. Oceanogr., 38, 18071820, doi:10.1175/2007JPO3812.1.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., W. R. Young, and J. A. Polton, 2006: Control of large-scale heat transport by small-scale mixing. J. Phys. Oceanogr., 36, 18771895, doi:10.1175/JPO2947.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. D. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36, 12051216, doi:10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and D. M. Straus, 1980: Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems. J. Atmos. Sci., 37, 11571176, doi:10.1175/1520-0469(1980)037<1157:FDIMEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and I. Kamenkovich, 2013: Effects of topography on baroclinic instability. J. Phys. Oceanogr., 43, 790804, doi:10.1175/JPO-D-12-0145.1.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and M. D. Levine, 1981: The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep-Sea Res., 28A, 10571085, doi:10.1016/0198-0149(81)90048-0.

    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., J. Le Sommer, J. D. Zika, M. Gehlen, J. C. Orr, P. Mathiot, and B. Barnier, 2012: Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode. J. Climate, 25, 69586974, doi:10.1175/JCLI-D-11-00309.1.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., T. L. Delworth, A. J. Rosati, S. M. Griffies, and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391558, doi:10.1175/2010JPO4353.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., , R. Ferrari, and J. Pedlosky, 2003: On the indeterminacy of rotational and divergent eddy fluxes. J. Phys. Oceanogr., 33, 478483, doi:10.1175/1520-0485(2003)033<0478:OTIORA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, doi:10.1126/science.283.5410.2077.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., A. M. de Boer, and B. K. Mignone, 2007: A simple theory of the pycnocline and overturning revisited. Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 19–32.

  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185, doi:10.1002/qj.49709640802.

    • Search Google Scholar
    • Export Citation
  • Grooms, I., L. Nadeau, and S. Smith, 2013: Mesoscale eddy energy locality in an idealized ocean model. J. Phys. Oceanogr., 43, 19111923, doi:10.1175/JPO-D-13-036.1.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 33123330, doi:10.1175/1520-0485(2001)031<3312:AEOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, doi:10.1175/JPO2980.1.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248, doi:10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hart, J. E., 1979: Barotropic quasi-geostrophic flow over anisotropic mountains. J. Atmos. Sci., 36, 17361746, doi:10.1175/1520-0469(1979)036<1736:BQGFOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1999: The macroturbulence of the troposphere. Tellus,51A, 59–70, doi:10.1034/j.1600-0870.1999.t01-1-00006.x.

  • Held, I. M., and M. Ting, 1990: Orographic versus thermal forcing of stationary waves: The importance of the mean low-level wind. J. Atmos. Sci., 47, 495500, doi:10.1175/1520-0469(1990)047<0495:OVTFOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946953, doi:10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. L. Panetta, and R. T. Pierrehumbert, 1985: Stationary external Rossby waves in vertical shear. J. Atmos. Sci., 42, 865883, doi:10.1175/1520-0469(1985)042<0865:SERWIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henning, C. C., and G. K. Vallis, 2005: The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. J. Phys. Oceanogr., 35, 880897, doi:10.1175/JPO2727.1.

    • Search Google Scholar
    • Export Citation
  • Hill, C., D. Ferreira, J.-M. Campin, J. Marshall, R. Abernathey, and N. Barrier, 2012: Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models—Insights from virtual deliberate tracer release experiments. Ocean Modell., 45-46, 1426, doi:10.1016/j.ocemod.2011.12.001.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608621, doi:10.1175/2007JCLI1925.1.

    • Search Google Scholar
    • Export Citation
  • Illari, L., and J. C. Marshall, 1983: On the interpretation of eddy fluxes during a blocking episode. J. Atmos. Sci., 40, 22322242, doi:10.1175/1520-0469(1983)040<2232:OTIOEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., and R. Ferrari, 2012: Macroturbulent equilibration in a thermally forced primitive equation system. J. Atmos. Sci., 69, 695713, doi:10.1175/JAS-D-11-041.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, doi:10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 3953, doi:10.1016/0198-0149(89)90017-4.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., and T. Radko, 2011: Role of the Southern Ocean in setting the Atlantic stratification and meridional overturning circulation. J. Mar. Res., 69, 277308, doi:10.1357/002224011798765286.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., H. Jones, and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32, 3954, doi:10.1175/1520-0485(2002)032<0039:TROETI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, A., R. A. Plumb, and J. Marshall, 2005: Transformed Eulerian-mean theory. Part II: Potential vorticity homogenization and equilibrium of a wind- and buoyancy-driven zonal flow. J. Phys. Oceanogr., 35, 175187, doi:10.1175/JPO-2670.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., and P. B. Rhines, 2001: Meridional transport across a zonal channel: Topographic localization. J. Phys. Oceanogr., 31, 14271439, doi:10.1175/1520-0485(2001)031<1427:MTAAZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, G., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344144, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771681, doi:10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Olbers, H. Ross, and D. Wolf-Gladrow, 1993: Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean. J. Phys. Oceanogr., 23, 465487, doi:10.1175/1520-0485(1993)023<0465:PVCOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hystrostatic, and non-hydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, doi:10.1175/2009JPO4236.1.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett.,33, L16608, doi:10.1029/2006GL026499.

  • Meredith, M. P., A. C. Naveira Garabato, A. M. Hogg, and R. Farneti, 2012: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Phys. Oceanogr., 42, 99110, doi:10.1175/2011JCLI4204.1.

    • Search Google Scholar
    • Export Citation
  • Merkine, L.-O., 1977: Convective and absolute instability of baroclinic eddies. Geophys. Astrophys. Fluid Dyn., 9, 129157, doi:10.1080/03091927708242322.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., and A. M. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148, doi:10.1175/JPO-D-12-057.1.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, doi:10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355, doi:10.1111/j.2153-3490.1951.tb00776.x.

    • Search Google Scholar
    • Export Citation
  • Naveira-Garabato, A. R., R. Ferrari, and K. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res.,116, C09019, doi:10.1029/2010JC006818.

  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, doi:10.1175/JPO-D-11-0189.1.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., 1998: Comments on “On the obscurantist physics of ‘form drag’ in theorizing about the circumpolar current.” J. Phys. Oceanogr., 28, 16471655, doi:10.1175/1520-0485(1998)028<1647:COOTOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Peixóto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Phillips, N. A., 1951: A simple three-dimensional model for the study of large-scale extratropical flow patterns. J. Meteor., 8, 381393, doi:10.1175/1520-0469(1951)008<0381:ASTDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1984: Local and global baroclinic instability of zonally varying flow. J. Atmos. Sci., 41, 21412163, doi:10.1175/1520-0469(1984)041<2141:LAGBIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second-order moments. J. Geophys. Res., 91, 66716681, doi:10.1029/JD091iD06p06671.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, doi:10.1146/annurev.earth.34.031405.125144.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2012: An analytical model of the response of the meridional overturning circulation to changes in wind and buoyancy forcing. J. Phys. Oceanogr., 42, 12701287, doi:10.1175/JPO-D-11-0198.1.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123223, doi:10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1972: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29, 405417, doi:10.1175/1520-0469(1972)029<0405:ASRDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, D., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776783, doi:10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257274, doi:10.1175/2009JPO4218.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2006: Scaling baroclinic eddy fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36, 720738, doi:10.1175/JPO2874.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 2009: Shifting westerlies. Science, 323, 14341435, doi:10.1126/science.1169823.

  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477500, doi:10.1016/0967-0637(95)00012-U.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and J. Russell, 2008: Ocean circulation in a warming climate. Nature, 451, 286288, doi:10.1038/nature06590.

  • Treguier, A. M., and J. C. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a beta-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, doi:10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., J. Le Sommer, and J. M. Molines, 2010: Response of the Southern Ocean to the southern annular mode: Interannual variability and multidecadal trend. J. Phys. Oceanogr., 40, 16591668, doi:10.1175/2010JPO4364.1.

    • Search Google Scholar
    • Export Citation
  • Viebahn, J., and C. Eden, 2010: Toward the impact of eddies on the response of the Southern Ocean to climate change. Ocean Modell., 34, 150165, doi:10.1016/j.ocemod.2010.05.005.

    • Search Google Scholar
    • Export Citation
  • Viebahn, J., and C. Eden, 2012: Standing eddies in the meridional overturning circulation. J. Phys. Oceanogr., 42, 14861508, doi:10.1175/JPO-D-11-087.1.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, and T. Haine, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381403, doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., L.-L. Fu, and T. Lee, 2010: Mechanisms of the meridional heat transport in the Southern Ocean. Ocean Dyn., 60, 791801, doi:10.1007/s10236-010-0288-0.

    • Search Google Scholar
    • Export Citation
  • Wilson, C., and R. G. Williams, 2004: Why are eddy fluxes of potential vorticity difficult to parameterize? J. Phys. Oceanogr., 34, 142155, doi:10.1175/1520-0485(2004)034<0142:WAEFOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. D’Asaro, 1995: Available potential energy and mixing in density stratified fluids. J. Fluid Mech., 289, 115128, doi:10.1017/S002211209500125X.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, doi:10.1175/2010JPO4393.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, J.-O., E. Maier-Reimer, and D. J. Olbers, 1991: Wind-driven flow over topography in a zonal beta-plane channel: A quasi-geostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 21, 236264, doi:10.1175/1520-0485(1991)021<0236:WDFOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., and Coauthors, 2013: Vertical eddy fluxes in the Southern Ocean. J. Phys. Oceanogr., 43, 941955, doi:10.1175/JPO-D-12-0178.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 8 8 8

Topographic Enhancement of Eddy Efficiency in Baroclinic Equilibration

View More View Less
  • 1 Columbia University, New York, New York
  • | 2 Scripps Institution of Oceanography, La Jolla, California
Restricted access

Abstract

The processes that determine the depth of the Southern Ocean thermocline are considered. In existing conceptual frameworks, the thermocline depth is determined by competition between the mean and eddy heat transport, with a contribution from the interaction with the stratification in the enclosed portion of the ocean. Using numerical simulations, this study examines the equilibration of an idealized circumpolar current with and without topography. The authors find that eddies are much more efficient when topography is present, leading to a shallower thermocline than in the flat case. A simple quasigeostrophic analytical model shows that the topographically induced standing wave increases the effective eddy diffusivity by increasing the local buoyancy gradients and lengthening the buoyancy contours across which the eddies transport heat. In addition to this local heat flux intensification, transient eddy heat fluxes are suppressed away from the topography, especially upstream, indicating that localized topography leads to local (absolute) baroclinic instability and its subsequent finite-amplitude equilibration, which extracts available potential energy very efficiently from the time-mean flow.

Corresponding author address: Ryan Abernathey, Columbia University, Lamont-Doherty Earth Observatory, 205C Oceanography, 61 Route 9W, P.O. Box 1000, Palisades, NY 10964-8000. E-mail: rpa@ldeo.columbia.edu

This article is included in the Ocean Turbulence Special Collection.

Abstract

The processes that determine the depth of the Southern Ocean thermocline are considered. In existing conceptual frameworks, the thermocline depth is determined by competition between the mean and eddy heat transport, with a contribution from the interaction with the stratification in the enclosed portion of the ocean. Using numerical simulations, this study examines the equilibration of an idealized circumpolar current with and without topography. The authors find that eddies are much more efficient when topography is present, leading to a shallower thermocline than in the flat case. A simple quasigeostrophic analytical model shows that the topographically induced standing wave increases the effective eddy diffusivity by increasing the local buoyancy gradients and lengthening the buoyancy contours across which the eddies transport heat. In addition to this local heat flux intensification, transient eddy heat fluxes are suppressed away from the topography, especially upstream, indicating that localized topography leads to local (absolute) baroclinic instability and its subsequent finite-amplitude equilibration, which extracts available potential energy very efficiently from the time-mean flow.

Corresponding author address: Ryan Abernathey, Columbia University, Lamont-Doherty Earth Observatory, 205C Oceanography, 61 Route 9W, P.O. Box 1000, Palisades, NY 10964-8000. E-mail: rpa@ldeo.columbia.edu

This article is included in the Ocean Turbulence Special Collection.

Save