On the Observability of Oceanic Gyres

Olivier Marchal Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Olivier Marchal in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the observability of a stratified ocean in a square flat basin on a midlatitude beta plane. Here, “observability” means the ability to establish, in a finite interval of time, the time-dependent ocean state given density observations over the same interval and with no regard for errors. The dynamics is linearized and hydrostatic, so that the motion can be decomposed into normal modes and the observability analysis is simplified. An observability Gramian (a symmetric matrix) is determined for the flows in an inviscid interior, in frictional boundary layers, and in a closed basin. Its properties are used to establish the condition for complete observability and to identify optimal data locations for each of these flows.

It is found that complete observability of an oceanic interior in time-dependent Sverdrup balance requires that the observations originate from the westernmost location at each considered latitude. The degree of observability increases westward due to westward propagation of long baroclinic Rossby waves: data collected in the west are more informative than data collected in the east. Likewise, the best locations for observing variability in the western (eastern) boundary layer are near (far from) the boundary. The observability of a closed basin is influenced by the westward propagation and the boundaries. Optimal data locations that are identified for different resolutions (0.01 to 1 yr) and lengths of data records (0.2 to 20 yr) show a variable influence of the planetary vorticity gradient. Data collected near the meridional boundaries appear always less informative, from the viewpoint of basin observability, than data collected away from these boundaries.

Corresponding author address: Olivier Marchal, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Quissett Campus, Woods Hole, MA 02543. E-mail: omarchal@whoi.edu

Abstract

This study examines the observability of a stratified ocean in a square flat basin on a midlatitude beta plane. Here, “observability” means the ability to establish, in a finite interval of time, the time-dependent ocean state given density observations over the same interval and with no regard for errors. The dynamics is linearized and hydrostatic, so that the motion can be decomposed into normal modes and the observability analysis is simplified. An observability Gramian (a symmetric matrix) is determined for the flows in an inviscid interior, in frictional boundary layers, and in a closed basin. Its properties are used to establish the condition for complete observability and to identify optimal data locations for each of these flows.

It is found that complete observability of an oceanic interior in time-dependent Sverdrup balance requires that the observations originate from the westernmost location at each considered latitude. The degree of observability increases westward due to westward propagation of long baroclinic Rossby waves: data collected in the west are more informative than data collected in the east. Likewise, the best locations for observing variability in the western (eastern) boundary layer are near (far from) the boundary. The observability of a closed basin is influenced by the westward propagation and the boundaries. Optimal data locations that are identified for different resolutions (0.01 to 1 yr) and lengths of data records (0.2 to 20 yr) show a variable influence of the planetary vorticity gradient. Data collected near the meridional boundaries appear always less informative, from the viewpoint of basin observability, than data collected away from these boundaries.

Corresponding author address: Olivier Marchal, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Quissett Campus, Woods Hole, MA 02543. E-mail: omarchal@whoi.edu
Save
  • Atkinson, A. C., and A. N. Donev, 1992: Optimum Experimental Designs. Oxford Statistical Science Series, Vol. 8, Clarendon Press, 328 pp.

  • Baehr, J., J. Hirschi, J.-O. Beismann, and J. Marotzke, 2004: Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. J. Mar. Res., 62, 283312, doi:10.1357/0022240041446191.

    • Search Google Scholar
    • Export Citation
  • Baehr, J., D. McInerney, K. Keller, and J. Marotzke, 2008: Optimization of an observing system design for the North Atlantic meridional overturning circulation. J. Atmos. Oceanic Technol., 25, 625634, doi:10.1175/2007JTECHO535.1.

    • Search Google Scholar
    • Export Citation
  • Bender, C. M., and S. A. Orszag, 1978: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Company, 593 pp.

  • Bennett, A. F., 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 234 pp.

  • Campbell, G. A., and R. M. Foster, 1948: Fourier Integrals for Practical Applications. D. Van Nostrand Co., 177 pp.

  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, doi:10.1126/science.272.5259.234.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. de Szoeke, M. G. Schlax, K. E. El Naggar, and N. Siwertz, 1998: Geographic variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, C. T., 1999: Linear System Theory and Design. 3rd ed. Oxford University Press, 334 pp.

  • Colin de Verdière, A., and R. Tailleux, 2005: The interaction of a baroclinic mean flow with long Rossby waves. J. Phys. Oceanogr., 35, 865879, doi:10.1175/JPO2712.1.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and D. B. Chelton, 1999: The modification of long planetary waves by homogeneous potential vorticity layers. J. Phys. Oceanogr., 29, 500511, doi:10.1175/1520-0485(1999)029<0500:TMOLPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Texts in Applied Mathematics, Vol. 32, Springer, New York, 465 pp.

  • Frankignoul, C., 1981: Low-frequency temperature fluctuations off Bermuda. J. Geophys. Res., 86, 65226528, doi:10.1029/JC086iC07p06522.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27, 15331546, doi:10.1175/1520-0485(1997)027<1533:ASMOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., 2001: Data assimilation by models. Satellite Altimetry and Earth Sciences, L.-L. Fu and A. Cazenave, Eds., International Geophysics Series, Vol. 69, Amer. Geophys. Union, 237–265.

  • Fukumori, I., J. Benveniste, C. Wunsch, and D. B. Haidvogel, 1993: Assimilation of sea surface topography into an ocean general circulation model using a steady-state smoother. J. Phys. Oceanogr., 23, 18311855, doi:10.1175/1520-0485(1993)023<1831:AOSSTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gelb, A., J. F. Kasper, R. A. Nash, C. F. Price, and A. A. Sutherland, 1974: Applied Optimal Estimation. M.I.T. Press, 374 pp.

  • Hallberg, R., and P. Rhines, 1996: Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. J. Phys. Oceanogr., 26, 913940, doi:10.1175/1520-0485(1996)026<0913:BDCIAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heimbach, P., C. Wunsch, R. M. Ponte, G. Forget, C. Hill, and J. Utke, 2011: Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design. Deep-Sea Res. II, 58, 18581879, doi:10.1016/j.dsr2.2010.10.065.

    • Search Google Scholar
    • Export Citation
  • Hinson, B. T., and K. A. Morgansen, 2013: Observability optimization for nonholonomic integrator. Proc. American Control Conf., Washington, DC, Boeing, 42574262.

  • Hirschi, J., and J. Marotzke, 2007: Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J. Phys. Oceanogr., 37, 743763, doi:10.1175/JPO3019.1.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J., J. Baehr, J. Marotzke, J. Stark, S. Cunningham, and J.-O. Beismann, 2003: A monitoring design for the Atlantic meridional overturning circulation. Geophys. Res. Lett., 30, 1413, doi:10.1029/2002GL016776.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., and C. Wunsch, 2010: Paleophysical oceanography with emphasis on transport rates. Annu. Rev. Mar. Sci., 2, 134, doi:10.1146/annurev-marine-120308-081056.

    • Search Google Scholar
    • Export Citation
  • Jakobsen, P. K., M. H. Ribergaard, D. Quadfasel, T. Schmith, and C. W. Hughes, 2003: Near-surface circulation in the northern North Atlantic as inferred from Lagrangian drifters: Variability from the mesoscale to interannual. J. Geophys. Res., 108, 3251, doi:10.1029/2002JC001554.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Johnson, C., B. J. Hoskins, N. K. Nichols, and S. P. Ballard, 2006: A singular vector perspective of 4DVAR: The spatial structure and evolution of baroclinic weather systems. Mon. Wea. Rev., 134, 34363455, doi:10.1175/MWR3243.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., and P. Robbins, 1996: The long-term hydrographic record at Bermuda. J. Climate, 9, 31213131, doi:10.1175/1520-0442(1996)009<3121:TLTHRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawase, M., 1987: Establishment of deep ocean circulation driven by deep water production. J. Phys. Oceanogr., 17, 22942317, doi:10.1175/1520-0485(1987)017<2294:EODOCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 1990: Observations of long Rossby waves in the northern tropical Pacific. J. Geophys. Res., 95, 51835217, doi:10.1029/JC095iC04p05183.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2004: The dispersion relation for planetary waves in the presence of mean flow and topography. Part I: Analytical theory and one-dimension examples. J. Phys. Oceanogr., 34, 26922711, doi:10.1175/JPO2635.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2005: The dispersion relation for planetary waves in the presence of mean flow and topography. Part II: Two-dimensional examples and global results. J. Phys. Oceanogr., 35, 21102133, doi:10.1175/JPO2817.1.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., and D. Stammer, 2004: Optimal observations for variational data assimilation. J. Phys. Oceanogr., 34, 529542, doi:10.1175/2513.1.

    • Search Google Scholar
    • Export Citation
  • Krener, A. J., 2008: Eulerian and Lagrangian observability of point vortex flows. Tellus,60A, 10891102. [Available online at http://www.tellusa.net/index.php/tellusa/article/view/15509.]

    • Search Google Scholar
    • Export Citation
  • Krener, A. J., and K. Ide, 2009: Measures of unobservability. Proc. 48th IEEE Conf. on Decision and Control, Shanghai, China, IEEE, 6401–6406, doi:10.1109/CDC.2009.5400067.

  • LaCasce, J. H., 2000: Floats and f/H. J. Mar. Res., 58, 6195, doi:10.1357/002224000321511205.

  • Lall, S., J. E. Mardsen, and S. Glavaski, 2002: A subspace approach to balance truncation for model reduction of nonlinear control system. Int. J. Robust Nonlinear Cont., 12, 519535, doi:10.1002/rnc.657.

    • Search Google Scholar
    • Export Citation
  • LeBlond, P. H., and L. A. Mysak, 1978: Waves in the Ocean. Elsevier Oceanographic Series, Vol. 20, Elsevier, 602 pp.

  • MacMynowski, D. G., and E. Tziperman, 2006: Two-way feedback interaction between the thermohaline and wind-driven circulations. J. Phys. Oceanogr., 36, 914929, doi:10.1175/JPO2902.1.

    • Search Google Scholar
    • Export Citation
  • Maybeck, P. S., 1979: Stochastic Models, Estimation, and Control. Vol. 1. Academic Press, 444 pp.

  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, doi:10.1175/2009JPO4236.1.

    • Search Google Scholar
    • Export Citation
  • Meditch, J. S., 1969: Stochastic Optimal Linear Estimation and Control. McGraw-Hill Series in Electronic Systems, McGraw-Hill, 394 pp.

  • Miller, R. N., 1989: Direct assimilation of altimetric differences using the Kalman filter. Dyn. Atmos. Oceans, 13, 317333, doi:10.1016/0377-0265(89)90044-4.

    • Search Google Scholar
    • Export Citation
  • NAG, cited 1999: The NAG Fortran Library Manual, Mark 19. Numerical Algorithms Group Limited. [Available online at http://www.nag.com/numeric/fl/manual19/html/mark19.html.]

  • Osychny, V., and P. Cornillon, 2004: Properties of Rossby waves in the North Atlantic estimated from satellite data. J. Phys. Oceanogr., 34, 6176, doi:10.1175/1520-0485(2004)034<0061:PORWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pedlosky, J., 2003: Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer, 260 pp.

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1986: Numerical Recipes in Fortran: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 963 pp.

  • Rayner, D., and Coauthors, 2011: Monitoring the Atlantic meridional overturning circulation. Deep-Sea Res., 58, 17441753, doi:10.1016/j.dsr2.2010.10.056.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1986: A simplified linear ocean circulation theory. J. Mar. Res., 44, 695711, doi:10.1357/002224086788401602.

  • Singh, A. K., and J. Hahn, 2004: Optimal sensor location for nonlinear dynamic systems via empirical Gramians. Dynamics and Control of Process Systems, S. Shah and J. F. MacGregor, Eds., Elsevier, 965–971.

  • Sturges, W., and B. G. Hong, 1995: Wind forcing of the Atlantic thermocline along 32°N at low frequencies. J. Phys. Oceanogr., 25, 17061715, doi:10.1175/1520-0485(1995)025<1706:WFOTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., B. G. Hong, and A. J. Clarke, 1998: Decadal wind forcing of the North Atlantic subtropical gyre. J. Phys. Oceanogr., 28, 659668, doi:10.1175/1520-0485(1998)028<0659:DWFOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2012: On the generalized eigenvalue problem for the Rossby wave vertical velocity in the presence of mean flow and topography. J. Phys. Oceanogr., 42, 10451050, doi:10.1175/JPO-D-12-010.1.

    • Search Google Scholar
    • Export Citation
  • van den Berg, H. C. J., F. W. J. Hoefsloot, H. F. M. Boelens, and A. K. Smidle, 2000: Selection of optimal sensor position in a tubular reactor using robust degree of observability criteria. Chem. Eng. Sci., 55, 827837, doi:10.1016/S0009-2509(99)00360-7.

    • Search Google Scholar
    • Export Citation
  • van de Wal, M., and B. de Jager, 2001: A review of methods for input/output selection. Automatica, 37, 487510, doi:10.1016/S0005-1098(00)00181-3.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 1977: Annual forcing of baroclinic long waves in the tropical North Pacific Ocean. J. Phys. Oceanogr., 7, 5061, doi:10.1175/1520-0485(1977)007<0050:AFOBLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, doi:10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems. Cambridge University Press, 371 pp.

  • Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica, 230, 197208, doi:10.1016/j.physd.2006.09.040.

  • Wunsch, C., and P. Heimbach, 2013: Dynamically and kinematically consistent global ocean circulation and ice state estimates. Ocean Circulation and Climate, 2nd ed. G. Siedler et al., Eds., International Geophysics Series, Vol. 103, 553–573.

  • Zarroug, M., J. Nycander, and K. Döös, 2010: Energetics of tidally generated internal waves for nonuniform stratification. Tellus,62A, 7179. [Available online at http://www.tellusa.net/index.php/tellusa/article/view/15653.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 588 419 140
PDF Downloads 133 40 7