The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation

Harold D. B. S. Heorton Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Harold D. B. S. Heorton in
Current site
Google Scholar
PubMed
Close
,
Daniel L. Feltham Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Daniel L. Feltham in
Current site
Google Scholar
PubMed
Close
, and
Julian C. R. Hunt Centre for Polar Observation and Modelling, University College London, London, United Kingdom

Search for other papers by Julian C. R. Hunt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions.

It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.

Corresponding author address: Harold D. B. S. Heorton, Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, P.O. Box 243, Reading, RG6 6BB, United Kingdom. E-mail: h.heorton@reading.ac.uk

Abstract

The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions.

It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.

Corresponding author address: Harold D. B. S. Heorton, Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, P.O. Box 243, Reading, RG6 6BB, United Kingdom. E-mail: h.heorton@reading.ac.uk
Save
  • Anderson, R. J., 1987: Wind stress measurements over rough ice during the 1984 marginal ice zone experiment. J. Geophys. Res., 92, 6933–6941, doi:10.1029/JC092iC07p06933.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, W. B. Tucker III, and S. F. Ackley, 1984: Atmospheric boundary-layer modification, drag coefficient, and surface heat flux in the Antarctic marginal ice zone. J. Geophys. Res., 89, 649–661, doi:10.1029/JC089iC01p00649.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, K. J. Claffy, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor., 97, 459–486, doi:10.1023/A:1002793831076.

    • Search Google Scholar
    • Export Citation
  • Belcher, S., T. Newley, and J. Hunt, 1993: The drag on an undulating surface induced by the flow of a turbulent boundary-layer. J. Fluid Mech., 249, 557–596, doi:10.1017/S0022112093001296.

    • Search Google Scholar
    • Export Citation
  • Bennett, T. J., Jr., and K. Hunkins, 1986: Atmospheric boundary layer modification in the marginal ice zone. J. Geophys. Res., 91, 13 033–13 044, doi:10.1029/JC091iC11p13033.

    • Search Google Scholar
    • Export Citation
  • Birnbaum, G., and C. Lupkes, 2002: A new parameterization of surface drag in the marginal sea ice zone. Tellus,54A, 107–123, doi:10.1034/j.1600-0870.2002.00243.x.

  • Brümmer, B., B. Busack, H. Hoeber, and G. Kruspe, 1994: Boundary-layer observations over water and Arctic sea-ice during on-ice air flow. Bound.-Layer Meteor., 68, 75–108, doi:10.1007/BF00712665.

    • Search Google Scholar
    • Export Citation
  • Chechin, D. G., C. Lüpkes, I. A. Repina, and V. M. Gryanik, 2013: Idealized dry quasi 2-D mesoscale simulations of cold-air outbreaks over the marginal sea ice zone with fine and coarse resolution. J. Geophys. Res.,118, 8787–8813, doi:10.1002/jgrd.50679.

  • Csanady, G. T., 2001: Air–Sea Interaction: Laws and Mechanisms. Cambridge University Press, 239 pp.

  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res.,108, 8062, doi:10.1029/2000JC000715.

  • Fairall, C. W., and R. Markson, 1987: Mesoscale variations in surface stress, heat fluxes, and drag coefficient in the marginal ice zone during the 1983 marginal ice zone experiment. J. Geophys. Res., 92, 6921–6932, doi:10.1029/JC092iC07p06921.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate,16, 571–591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

  • Feltham, D. L., 2005: Granular flow in the marginal ice zone. Philos. Trans. Roy. Soc., A363, 1677–1700, doi:10.1098/rsta.2005.1601.

    • Search Google Scholar
    • Export Citation
  • Feltham, D. L., 2008: Sea ice rheology. Annu. Rev. Fluid Mech.,40, 91–112, doi:10.1146/annurev.fluid.40.111406.102151.

  • Fer, I., and A. Sundfjord, 2007: Observations of upper ocean boundary layer dynamics in the marginal ice zone. J. Geophys. Res.,112, C04012, doi:10.1029/2005JC003428.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer.Cambridge University Press, 316 pp.

  • Gray, J., and L. W. Morland, 1994: A two-dimensional model for the dynamics of sea ice. Philos. Trans. Roy. Soc. London, A347, 219–290, doi:10.1098/rsta.1994.0045.

    • Search Google Scholar
    • Export Citation
  • Guest, P. S., and K. Davidson, 1991: The aerodynamic roughness of different types of sea ice. J. Geophys. Res., 96, 4709–4721, doi:10.1029/90JC02261.

    • Search Google Scholar
    • Export Citation
  • Guest, P. S., J. W. Glendening, and K. L. Davidson, 1995: An observational and numerical study of wind stress variations within marginal ice zones. J. Geophys. Res.,100, 10 887–10 904, doi:10.1029/94JC03391.

  • Heorton, H., 2013: Jet formation at the sea ice edge. Ph.D. thesis, University College London, 160 pp. [Available online at http://discovery.ucl.ac.uk/1391815/.]

  • Herman, A., 2010: Sea-ice floe-size distribution in the context of spontaneous scaling emergence in stochastic systems. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 81, 066123, doi:10.1103/PhysRevE.81.066123.

    • Search Google Scholar
    • Export Citation
  • Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2011: Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geosci. Model Dev., 4, 223–253, doi:10.5194/gmd-4-223-2011.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D. I., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815–846, doi:10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houghton, D. M., 1992: Wind Strategy.Fenhurst Books, 91 pp.

  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849–1867, doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual version 4.1. T-3 Fluid Dynamics Group, Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Hunt, J. C. R., A. Orr, J. W. Rottman, and R. Capon, 2004: Coriolis effects in mesoscale flows with sharp changes in surface conditions. Quart. J. Roy. Meteor. Soc., 130, 2703–2731, doi:10.1256/qj.04.14.

    • Search Google Scholar
    • Export Citation
  • Jarmalavicius, D., J. Satkunas, G. Zilinskas, and D. Pupienis, 2012: The influence of coastal morphology on wind dynamics. Est. J. Earth Sci., 61, 120–130, doi:10.3176/earth.2012.2.04.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., J. A. Johannessen, J. Morison, B. A. Farrelly, and E. A. Svendsen, 1983: Oceanographic conditions in the marginal ice zone north of Svalbard in early fall 1979 with an emphasis on mesoscale processes. J. Geophys. Res., 88, 2755–2769, doi:10.1029/JC088iC05p02755.

    • Search Google Scholar
    • Export Citation
  • Kantha, L., and G. Mellor, 1989: A numerical model of the atmospheric boundary layer over a marginal ice zone. J. Geophys. Res., 94, 4959–4970, doi:10.1029/JC094iC04p04959.

    • Search Google Scholar
    • Export Citation
  • King, J. C., M. J. Doble, and P. R. Holland, 2010: Analysis of a rapid sea ice retreat event in the Bellingshausen Sea. J. Geophys. Res.,115, C12030, doi:10.1029/2010JC006101.

  • Kwok, R., G. F. Cunningham, and S. S. Pang, 2004: Fram Strait sea ice outflow. J. Geophys. Res., 109, C01009, doi:10.1029/2003JC001785.

  • Lepparanta, M., and W. Hibler, 1985: The role of plastic ice interaction in marginal ice zone dynamics. J. Geophys. Res., 90, 11 899–11 909, doi:10.1029/JC090iC06p11899.

    • Search Google Scholar
    • Export Citation
  • Long, Z., and W. Perrie, 2012: Air-sea interactions during an Arctic storm. J. Geophys. Res., 117, D15103, doi:10.1029/2011JD016985.

  • Lu, P., Z. J. Li, Z. H. Zhang, and X. L. Dong, 2008: Aerial observations of floe size distribution in the marginal ice zone of summer Prydz Bay. J. Geophys. Res., 113, C02011, doi:10.1029/2006JC003965.

    • Search Google Scholar
    • Export Citation
  • Lüpkes, C., and G. Birnbaum, 2005: Surface drag in the Arctic marginal sea-ice zone: A comparison of different parameterisation concepts. Bound.-Layer Meteor., 117, 179–211, doi:10.1007/s10546-005-1445-8.

    • Search Google Scholar
    • Export Citation
  • Lüpkes, C., V. M. Gryanik, J. Hartmann, and E. L Andreas, 2012: A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J. Geophys. Res., 117, D13112, doi:10.1029/2012JD017630.

    • Search Google Scholar
    • Export Citation
  • Markus, T., 1999: Results from an ECMWF-SSM/I forced mixed layer model of the Southern Ocean. J. Geophys. Res.,104, 15 603–15 620, doi:10.1029/1999JC900080.

  • Maslowski, W., J. Clement Kinney, M. Higgins, and A. Roberts, 2012: The future of Arctic sea ice. Annu. Rev. Earth Planet. Sci., 40, 625–654, doi:10.1146/annurev-earth-042711-105345.

    • Search Google Scholar
    • Export Citation
  • Massom, R. A., and Coauthors, 2006: Extreme anomalous atmospheric circulation in the west Antarctic Peninsula region in austral spring and summer 2001/02, and its profound impact on sea ice and biota. J. Climate, 19, 3544–3571, doi:10.1175/JCLI3805.1.

    • Search Google Scholar
    • Export Citation
  • Massom, R. A., S. E. Stammerjohn, W. Lefebvre, S. A. Harangozo, N. Adams, T. A. Scambos, M. J. Pook, and C. Fowler, 2008: West Antarctic Peninsula sea ice in 2005: Extreme ice compaction and ice edge retreat due to strong anomaly with respect to climate. J. Geophys. Res., 113, C02S20, doi:10.1029/2007JC004239.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., G. A. Maykut, and J. H. Morison, 1987: Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J. Geophys. Res., 92, 7017–7031, doi:10.1029/JC092iC07p07017.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., R. Kwok, R. Robins, and M. Coon, 2005: Upwelling of Arctic pycnocline associated with shear motion of sea ice. Geophys. Res. Lett., 32, L10616, doi:10.1029/2004GL021819.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., and J. M. Wallace, 2012: The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011. Geophys. Res. Lett., 39, L09704, doi:10.1029/2012GL051330.

    • Search Google Scholar
    • Export Citation
  • Orr, A., E. Hanna, J. C. R. Hunt, J. Cappelen, K. Steffen, and A. G. Stephens, 2005a: Characteristics of stable flows over southern Greenland. Pure Appl. Geophys., 162, 1747–1778, doi:10.1007/s00024-005-2691-x.

    • Search Google Scholar
    • Export Citation
  • Orr, A., J. Hunt, R. Capon, J. Sommeria, D. Cresswell, and A. Owinoh, 2005b: Coriolis effects on wind jets and cloudiness along coasts. Weather, 60, 291–299, doi:10.1256/wea.219.04.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1991: Turbulent mixing near the Yermak Plateau during the coordinated eastern Arctic experiment. J. Geophys. Res., 96, 4769–4782, doi:10.1029/90JC02260.

    • Search Google Scholar
    • Export Citation
  • Pedersen, L. T., and M. Coon, 2004: A sea ice model for the marginal ice zone with an application to the Greenland Sea. J. Geophys. Res.,109, C03008, doi:10.1029/2003JC001827.

  • Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. W. K. Moore, and R. F. Milliff, 2003: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424, 152–156, doi:10.1038/nature01729.

    • Search Google Scholar
    • Export Citation
  • Quadfasel, D., J. C. Gascard, and K. P. Koltermann, 1987: Large-scale oceanography in Fram Strait during the 1984 marginal ice zone experiment. J. Geophys. Res., 92, 6719–6728, doi:10.1029/JC092iC07p06719.

    • Search Google Scholar
    • Export Citation
  • Roed, L. P., and J. J. O’Brien, 1983: A coupled ice-ocean model of upwelling in the marginal ice zone. J. Geophys. Res., 88, 2863–2872, doi:10.1029/JC088iC05p02863.

    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., T. P. Stanton, M. G. McPhee, and T. Kikuchi, 2008: Estimates of surface roughness length in heterogeneous under-ice boundary layers. J. Geophys. Res., 113, C08030, doi:10.1029/2007JC004550.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 2007: Sea Breeze and Local Winds. Cambridge University Press, 252 pp.

  • Thorpe, S. A., 2005: The Turbulent Ocean.Cambridge University Press, 439 pp.

  • Tisler, P., T. Vihma, G. Müller, and B. Brümmer, 2008: Modelling of warm-air advection over Arctic sea ice. Tellus, 60A, 775–788, doi:10.1111/j.1600-0870.2008.00316.x.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., 2005: The summer Arctic boundary layer during the Arctic Ocean Experiment 2001 (AOE-2001). Bound.-Layer Meteor., 117, 5–36, doi:10.1007/s10546-004-5641-8.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., M. L. Timmermans, D. K. Perovich, R. A. Krishfield, A. Proshutinsky, and J. A. Richter-Menge, 2010: Influences of the ocean surface mixed layer and thermohaline stratification on Arctic sea ice in the central Canada basin. J. Geophys. Res., 115, C10018, doi:10.1029/2009JC005660.

    • Search Google Scholar
    • Export Citation
  • van Angelen, J. H., M. R. van den Broeke, and R. Kwok, 2011: The Greenland Sea jet: A mechanism for wind-driven sea ice export through Fram Strait. Geophys. Res. Lett., 38, L12805, doi:10.1029/2011GL047837.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., and H. Gallee, 1996: Observation and simulation of barrier winds at the western margin of the Greenland Ice Sheet. Quart. J. Roy. Meteor. Soc., 122, 1365–1383, doi:10.1002/qj.49712253407.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., and B. Brummer, 2002: Observations and modelling of the on-ice and off-ice air flow over the northern Baltic Sea. Bound.-Layer Meteor., 103, 1–27, doi:10.1023/A:1014566530774.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., J. Hartmann, and C. Lüpkes, 2003: A case study of an on-ice air flow over the Arctic marginal sea-ice zone. Bound.-Layer Meteor., 107, 189–217, doi:10.1023/A:1021599601948.

    • Search Google Scholar
    • Export Citation
  • Williams, G. D., S. Nicol, B. Raymond, and K. Meiners, 2008: Summertime mixed layer development in the marginal sea ice zone off the Mawson coast, East Antarctica. Deep-Sea Res. II, 55, 365–376, doi:10.1016/j.dsr2.2007.11.007.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 341 178 4
PDF Downloads 213 70 3