Observations of Internal Gravity Waves by Argo Floats

Tyler D. Hennon School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Tyler D. Hennon in
Current site
Google Scholar
PubMed
Close
,
Stephen C. Riser School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Stephen C. Riser in
Current site
Google Scholar
PubMed
Close
, and
Matthew H. Alford School of Oceanography, and Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the global variability of the internal wave field near a depth of 1000 m using data from a set of 194 Argo floats equipped with Iridium communications, capable of measuring hourly temperature and pressure during the park phase of their 10-day cycles. These data have been used to estimate vertical isotherm displacements at hourly intervals, yielding a global measure of the heaving due to internal gravity waves. The displacement results have been employed to examine the global variability of these waves and how the displacement power spectrum compares to the canonical Garrett–Munk spectrum. Using the data, the authors find correlations between internal wave intensity and seafloor roughness, proximity to the seafloor, and the magnitude of the local barotropic velocity. The measurements also show large seamount-trapped waves at high latitudes and coastally trapped subinertial waves. These observations provide a rough global census of the nature of these waves that can ultimately be used in studies of ocean mixing.

Corresponding author address: Tyler Hennon, University of Washington, School of Oceanography, P.O. Box 357940, Seattle, WA 98195-7940. E-mail: thennon@uw.edu

Abstract

This study examines the global variability of the internal wave field near a depth of 1000 m using data from a set of 194 Argo floats equipped with Iridium communications, capable of measuring hourly temperature and pressure during the park phase of their 10-day cycles. These data have been used to estimate vertical isotherm displacements at hourly intervals, yielding a global measure of the heaving due to internal gravity waves. The displacement results have been employed to examine the global variability of these waves and how the displacement power spectrum compares to the canonical Garrett–Munk spectrum. Using the data, the authors find correlations between internal wave intensity and seafloor roughness, proximity to the seafloor, and the magnitude of the local barotropic velocity. The measurements also show large seamount-trapped waves at high latitudes and coastally trapped subinertial waves. These observations provide a rough global census of the nature of these waves that can ultimately be used in studies of ocean mixing.

Corresponding author address: Tyler Hennon, University of Washington, School of Oceanography, P.O. Box 357940, Seattle, WA 98195-7940. E-mail: thennon@uw.edu
Save
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, doi:10.1175/JPO3106.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848, doi:10.1175/JPO3085.1.

    • Search Google Scholar
    • Export Citation
  • Amante, C., and B. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 19 pp. [Available online at http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.]

  • Brink, K. H., 1990: On the generation of seamount-trapped waves. Deep-Sea Res., 37, 15691582, doi:10.1016/0198-0149(90)90062-Z.

  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, doi:10.1029/JC081i012p01943.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99, 24 82124 852, doi:10.1029/94JC01894.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1991: Observations of amplified flows atop a large seamount. J. Geophys. Res., 96, 15 22715 236, doi:10.1029/91JC01176.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, doi:10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Gregg, M., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Kunze, E., 1985: Near-inertial wave propagation in a geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, doi:10.1038/35003164.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., 2002: A modification of the Garrett–Munk internal wave spectrum. J. Phys. Oceanogr., 32, 31663181, doi:10.1175/1520-0485(2002)032<3166:AMOTGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. J. Geophys. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2004: Observations of energetic high-wavenumber internal waves in the Kuroshio. J. Phys. Oceanogr., 34, 14951505, doi:10.1175/1520-0485(2004)034<1495:OOEHIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., S. Riser, R. Davis, and Y. Desaubies, 2004: Autonomous profiling floats: Workhorse for broad-scale observations. Mar. Technol. Soc. J., 38, 2129, doi:10.4031/002533204787522802.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1998: Large-scale circulation with locally enhanced vertical mixing. J. Phys. Oceanogr., 28, 712726, doi:10.1175/1520-0485(1998)028<0712:LSCWLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Whalen, C., L. D. Talley, and J. A. Mackinnon, 2012: Spatial and temporal variability of global mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Jing, S. Riser, and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366, doi:10.1038/ngeo1156.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1975: Deep ocean internal waves: What do we really know? J. Geophys. Res., 80, 339343, doi:10.1029/JC080i003p00339.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 523 159 15
PDF Downloads 456 121 18