Evaluating Different Parameterizations for Mixed Layer Eddy Fluxes induced by Baroclinic Instability

Nils Brüggemann University of Hamburg, Hamburg, Germany

Search for other papers by Nils Brüggemann in
Current site
Google Scholar
PubMed
Close
and
Carsten Eden University of Hamburg, Hamburg, Germany

Search for other papers by Carsten Eden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the authors discuss two different parameterizations for the effect of mixed layer eddies, one based on ageostrophic linear stability analysis (ALS) and the other one based on a scaling of the potential energy release by eddies (PER). Both parameterizations contradict each other in two aspects. First, they predict different functional relationships between the magnitude of the eddy fluxes and the Richardson number (Ri) related to the background state. Second, they also predict different vertical structure functions for the horizontal eddy fluxes. Numerical simulations for two different configurations and for a large range of different background conditions are used to evaluate the parameterizations. It turns out that PER is better suited to capture the Ri dependency of the magnitude of the eddy fluxes. On the other hand, the vertical structure of the meridional eddy fluxes predicted by ALS is more accurate than that of PER, while the vertical structure of the vertical eddy fluxes is well predicted by both parameterizations. Therefore, this study suggests the use of the magnitude of PER and the vertical structure functions of ALS for an improved parameterization of mixed layer eddy fluxes.

Corresponding author address: Nils Brüggemann, University of Hamburg, Bundesstrae 53, Hamburg D-20146, Germany. E-mail: nils.brueggemann@zmaw.de

Abstract

In this study, the authors discuss two different parameterizations for the effect of mixed layer eddies, one based on ageostrophic linear stability analysis (ALS) and the other one based on a scaling of the potential energy release by eddies (PER). Both parameterizations contradict each other in two aspects. First, they predict different functional relationships between the magnitude of the eddy fluxes and the Richardson number (Ri) related to the background state. Second, they also predict different vertical structure functions for the horizontal eddy fluxes. Numerical simulations for two different configurations and for a large range of different background conditions are used to evaluate the parameterizations. It turns out that PER is better suited to capture the Ri dependency of the magnitude of the eddy fluxes. On the other hand, the vertical structure of the meridional eddy fluxes predicted by ALS is more accurate than that of PER, while the vertical structure of the vertical eddy fluxes is well predicted by both parameterizations. Therefore, this study suggests the use of the magnitude of PER and the vertical structure functions of ALS for an improved parameterization of mixed layer eddy fluxes.

Corresponding author address: Nils Brüggemann, University of Hamburg, Bundesstrae 53, Hamburg D-20146, Germany. E-mail: nils.brueggemann@zmaw.de
Save
  • Bachman, S., and B. Fox-Kemper, 2013: Eddy parameterization challenge suite I: Eady spindown. Ocean Modell., 64, 1228, doi:10.1016/j.ocemod.2012.12.003.

    • Search Google Scholar
    • Export Citation
  • Badin, G., A. Tandon, and A. Mahadevan, 2011: Lateral mixing in the pycnocline by baroclinic mixed layer eddies. J. Phys. Oceanogr., 41, 20802101, doi:10.1175/JPO-D-11-05.1.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., E. J. Campos, and A. M. Paiva, 2008: Submesoscale activity over the Argentinian shelf. Geophys. Res. Lett.,35, L15605, doi:10.1029/2008GL034736.

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Eden, C., 2006: Middepth equatorial tracer tongues in a model of the Atlantic Ocean. J. Geophys. Res.,111, C12025, doi:10.1029/2006JC003565.

  • Eden, C., 2007: Eddy length scales in the North Atlantic Ocean. J. Geophys. Res.,112, C06004, doi:10.1029/2006JC003901.

  • Eden, C., 2011: A closure for meso-scale eddy fluxes based on linear instability theory. Ocean Modell., 39, 362369, doi:10.1016/j.ocemod.2011.05.009.

    • Search Google Scholar
    • Export Citation
  • Eden, C., 2012: Implementing diffusivities from linear stability analysis in a three-dimensional general circulation ocean model. Ocean Modell., 57-58, 1528, doi:10.1016/j.ocemod.2012.08.001.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008a: Diapycnal mixing by meso-scale eddies. Ocean Modell., 23, 113120, doi:10.1016/j.ocemod.2008.04.006.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008b: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239, doi:10.1016/j.ocemod.2007.09.002.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and R. Ferrari, 2008: Parameterization of mixed layer eddies. Part II: Prognosis and impact. J. Phys. Oceanogr., 38, 11661179, doi:10.1175/2007JPO3788.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, doi:10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185, doi:10.1002/qj.49709640802.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, doi:10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56, 16881697, doi:10.1175/1520-0469(1999)056<1688:TSBOTZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P., 1997: On the parameterization of eddy transfer Part I. Theory. J. Mar. Res., 55, 11711197, doi:10.1357/0022240973224102.

    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, doi:10.1175/2007JPO3773.1.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2006: Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? Ocean Modell., 14, 222240, doi:10.1016/j.ocemod.2006.05.005.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, doi:10.1029/RG023i002p00165.

  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, doi:10.1175/JPO2770.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London,A456, 1217–1280, doi:10.1098/rspa.2000.0560.

  • Oschlies, A., 2002: Improved representation of upper-ocean dynamics and mixed layer depths in a model of the North Atlantic on switching from eddy-permitting to eddy-resolving grid resolution. J. Phys. Oceanogr., 32, 22772298, doi:10.1175/1520-0485(2002)032<2277:IROUOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174, doi:10.1175/JPO-2669.1.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1970: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci., 27, 721726, doi:10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1971: Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech., 45, 659671, doi:10.1017/S0022112071000260.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1972a: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29, 405418, doi:10.1175/1520-0469(1972)029<0405:ASRDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1972b: On non-geostrophic baroclinic stability: Part III. The momentum and heat transports. J. Atmos. Sci., 29, 419426, doi:10.1175/1520-0469(1972)029<0419:ONGBSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1996: On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr., 26, 406411, doi:10.1175/1520-0485(1996)026<0406:OARPOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, K. R., D. G. Wright, Y. Lu, and E. Demirov, 2006: A simple method for reducing seasonal bias and drift in eddy resolving ocean models. Ocean Modell., 13, 109125, doi:10.1016/j.ocemod.2005.11.003.

    • Search Google Scholar
    • Export Citation
  • Thomsen, S., C. Eden, and L. Czeschel, 2014: Stability analysis of the Labrador Current. J. Phys. Oceanogr., 44, 445463, doi:10.1175/JPO-D-13-0121.1.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., I. M. Held, and V. D. Larichev, 1997: Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27, 567580, doi:10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 1994: The subinertial mixed layer approximation. J. Phys. Oceanogr., 24, 18121826, doi:10.1175/1520-0485(1994)024<1812:TSMLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 317 68 1
PDF Downloads 167 47 3