Multiple Zonal Jets in a Differentially Heated Rotating Annulus

Carlowen A. Smith Geophysical Fluid Dynamics Institute and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Carlowen A. Smith in
Current site
Google Scholar
PubMed
Close
,
Kevin G. Speer Geophysical Fluid Dynamics Institute and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Kevin G. Speer in
Current site
Google Scholar
PubMed
Close
, and
Ross W. Griffiths Research School of Earth Sciences, Australian National University, Canberra, Australia

Search for other papers by Ross W. Griffiths in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A laboratory experiment of multiple baroclinic zonal jets is described, thought to be dynamically similar to flow observed in the Antarctic Circumpolar Current. Differential heating sets the overall temperature difference and drives unstable baroclinic flow, but the circulation is free to determine its own structure and local stratification; experiments were run to a stationary state and extend the dynamical regime of previous experiments. A topographic analog to the planetary β effect is imposed by the gradient of fluid depth with radius supplied by a sloping bottom and a parabolic free surface. New regimes of a low thermal Rossby number (RoT ~ 10−3) and high Taylor number (Ta ~ 1011) are explored such that the deformation radius Lρ is much smaller than the annulus gap width L and similar to the Rhines length. Multiple jets emerge in rough proportion to the smallness of the Rhines scale, relatively insensitive to the Taylor number; a regime diagram taking the β effect into account better reflects the emergence of the jets. Eddy momentum fluxes are consistent with an active role in maintaining the jets, and jet development appears to follow the Vallis and Maltrud phenomenology of anisotropic wave–turbulence interaction on a β plane. Intermittency and episodes of coherent meridional jet migration occur, especially during spinup.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-13-0255.s1.

Geophysical Fluid Dynamics Institute Contribution Number 469.

Corresponding author address: Carlowen A. Smith, Department of Earth, Ocean, and Atmospheric Sciences, Geophysical Fluid Dynamics Institute, Florida State University, 018 Keen Building, 77 Chieftain Way, Tallahassee, FL 32306-4360. E-mail: csmith@gfdi.fsu.edu

This article is included in the Ocean Turbulence Special Collection.

Abstract

A laboratory experiment of multiple baroclinic zonal jets is described, thought to be dynamically similar to flow observed in the Antarctic Circumpolar Current. Differential heating sets the overall temperature difference and drives unstable baroclinic flow, but the circulation is free to determine its own structure and local stratification; experiments were run to a stationary state and extend the dynamical regime of previous experiments. A topographic analog to the planetary β effect is imposed by the gradient of fluid depth with radius supplied by a sloping bottom and a parabolic free surface. New regimes of a low thermal Rossby number (RoT ~ 10−3) and high Taylor number (Ta ~ 1011) are explored such that the deformation radius Lρ is much smaller than the annulus gap width L and similar to the Rhines length. Multiple jets emerge in rough proportion to the smallness of the Rhines scale, relatively insensitive to the Taylor number; a regime diagram taking the β effect into account better reflects the emergence of the jets. Eddy momentum fluxes are consistent with an active role in maintaining the jets, and jet development appears to follow the Vallis and Maltrud phenomenology of anisotropic wave–turbulence interaction on a β plane. Intermittency and episodes of coherent meridional jet migration occur, especially during spinup.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-13-0255.s1.

Geophysical Fluid Dynamics Institute Contribution Number 469.

Corresponding author address: Carlowen A. Smith, Department of Earth, Ocean, and Atmospheric Sciences, Geophysical Fluid Dynamics Institute, Florida State University, 018 Keen Building, 77 Chieftain Way, Tallahassee, FL 32306-4360. E-mail: csmith@gfdi.fsu.edu

This article is included in the Ocean Turbulence Special Collection.

Save
  • Adrian, R. J., 2005: Twenty years of particle image velocimetry. Exp. Fluids, 39, 159169.

  • Afanasyev, Y. D., and J. Wells, 2005: Quasi-two-dimensional turbulence on the polar beta-plane: Laboratory experiments. Geophys. Astrophys. Fluid Dyn., 99, 117, doi:10.1080/03091920412331319513.

    • Search Google Scholar
    • Export Citation
  • Afanasyev, Y. D., and J. D. C. Craig, 2013: Rotating shallow water turbulence: Experiments with altimetry. Phys. Fluids,25, 106603, doi:10.1063/1.4826477.

  • Bastin, M. E., and P. L. Read, 1997: A laboratory study of baroclinic waves and turbulence in an internally heated rotating fluid annulus with sloping endwalls. J. Fluid Mech., 339, 173198, doi:10.1017/S0022112097005259.

    • Search Google Scholar
    • Export Citation
  • Bastin, M. E., and P. L. Read, 1998: Experiments on the structure of baroclinic waves and zonal jets in an internally heated, rotating, cylinder of fluid. Phys. Fluids, 10, 374389, doi:10.1063/1.869530.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009: A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis. J. Phys. Oceanogr., 39, 27112734, doi:10.1175/2009JPO4093.1.

    • Search Google Scholar
    • Export Citation
  • Boland, E. J. D., A. F. Thompson, E. Shuckburgh, and P. H. Haynes, 2012: The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr., 42, 16351651, doi:10.1175/JPO-D-11-0152.1.

    • Search Google Scholar
    • Export Citation
  • Buzyna, G., R. L. Pfeffer, and R. Kung, 1984: Transition to geostrophic turbulence in a rotating differentially heated annulus of fluid. J. Fluid Mech., 145, 377403, doi:10.1017/S0022112084002974.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1200 km). J. Phys. Oceanogr., 43, 24562474, doi:10.1175/JPO-D-13-063.1.

    • Search Google Scholar
    • Export Citation
  • Chekhlov, A., S. A. Orszag, S. Sukoriansky, B. Galperin, and I. Staroselsky, 1996: The effect of small-scale forcing on large-scale structures in two-dimensional flows. Physica D, 98, 321334, doi:10.1016/0167-2789(96)00102-9.

    • Search Google Scholar
    • Export Citation
  • Condie, S. A., and P. B. Rhines, 1994: Topographic Hadley cells. J. Fluid Mech., 280, 349368, doi:10.1017/S002211209400296X.

  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108, 8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Di Nitto, G., S. Espa, and A. Cenedese, 2013a: Simulating zonation in geophysical flows by laboratory experiments. Phys. Fluids,25, 086602, doi:10.1063/1.4817540.

  • Di Nitto, G., S. Espa, and A. Cenedese, 2013b: Zonal jets in rotating shallow water turbulence. Earth Sci., 2, 2330, doi:10.11648/j.earth.20130202.11.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and R. K. Scott, 2011: Jet sharpening by turbulent mixing. Philos. Trans. Roy. Soc. London, A369, 754770, doi:10.1098/rsta.2010.0306.

    • Search Google Scholar
    • Export Citation
  • Gage, K., and G. Nastrom, 1986: Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J. Atmos. Sci., 43, 729740, doi:10.1175/1520-0469(1986)043<0729:TIOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., H. Nakano, H.-P. Huang, and S. Sukoriansky, 2004: The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett., 31, L13303, doi:10.1029/2004GL019691.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, N. Dikovskaya, P. L. Read, Y. H. Yamazaki, and R. D. Wordsworth, 2006: Anisotropic turbulence and zonal jets in rotating flows with a β-effect. Nonlinear Processes Geophys., 13, 8398, doi:10.5194/npg-13-83-2006.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and N. Dikovskaya, 2010: Geophysical flows with anisotropic turbulence and dispersive waves: Flows with a β-effect. Ocean Dyn., 60, 427441, doi:10.1007/s10236-010-0278-2.

    • Search Google Scholar
    • Export Citation
  • Herbei, R., I. W. McKeague, and K. G. Speer, 2008: Gyres and jets: Inversion of tracer data for ocean circulation structure. J. Phys. Oceanogr., 38, 11801202, doi:10.1175/2007JPO3835.1.

    • Search Google Scholar
    • Export Citation
  • Hide, R., 1958: An experimental study of thermal convection in a rotating liquid. Philos. Trans. Roy. Soc. London, A250, 441478, doi:10.1098/rsta.1958.0004.

    • Search Google Scholar
    • Export Citation
  • Hide, R., and P. J. Mason, 1970: Baroclinic waves in a rotating fluid subject to internal heating. Philos. Trans. Roy. Soc. London, A268, 201232, doi:10.1098/rsta.1970.0073.

    • Search Google Scholar
    • Export Citation
  • Hide, R., and P. J. Mason, 1975: Sloping convection in a rotating fluid. Adv. Phys., 24, 47100, doi:10.1080/00018737500101371.

  • Hignett, P., A. A. White, R. D. Carter, W. D. N. Jackson, and R. M. Small, 1985: A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus. Quart. J. Roy. Meteor. Soc., 111, 131154, doi:10.1002/qj.49711146705.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., and R. W. Griffiths, 2010: A coupled ocean–atmosphere laboratory model of the Antarctic Circumpolar Current. Ocean Modell., 35, 5466, doi:10.1016/j.ocemod.2010.06.004.

    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., 2005: Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett., 32, L15604, doi:10.1029/2005GL023733.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., B. Galperin, and S. Sukoriansky, 2001: Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids, 13, 225240, doi:10.1063/1.1327594.

    • Search Google Scholar
    • Export Citation
  • Ketchum, C. B., 1972: An experimental study of baroclinic annulus waves at large Taylor number. J. Atmos. Sci., 29, 665679, doi:10.1175/1520-0469(1972)029<0665:AESOBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2007: Oceanic isopycnal slope spectra. Part II: Turbulence. J. Phys. Oceanogr., 37, 12321245, doi:10.1175/JPO3074.1.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and K. H. Brink, 2000: Geostrophic turbulence over a slope. J. Phys. Oceanogr., 30, 13051324, doi:10.1175/1520-0485(2000)030<1305:GTOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lappa, M., 2012: Rotating Thermal Flows in Natural and Industrial Processes.John Wiley and Sons, 544 pp.

  • Maher, N., 2010: A laboratory investigation into the effects of westerly wind stress and buoyancy forcing on the Antarctic Circumpolar Current. B.S. thesis, Research School of Earth Sciences, Australian National University, 66 pp.

  • Mason, P. J., 1975: Baroclinic waves in a container with sloping end walls. Philos. Trans. Roy. Soc. London, A278, 397445, doi:10.1098/rsta.1975.0032.

    • Search Google Scholar
    • Export Citation
  • Mcintyre, M. E., 2008: Potential-vorticity inversion and the wave-turbulence jigsaw: Some recent clarifications. Adv. Geosci., 15, 4756, doi:10.5194/adgeo-15-47-2008.

    • Search Google Scholar
    • Export Citation
  • Merminod, S., 2011: An exploration of the effects of mechanical forcing and buoyancy forcing on the Antarctic Circumpolar Current. Ecole Normale Superieure, Stage long de recherche, 33 pp.

  • Nakano, H., and N. Suginohara, 2002: A series of middepth zonal flows in the Pacific driven by winds. J. Phys. Oceanogr., 32, 161176, doi:10.1175/1520-0485(2002)032<0161:ASOMZF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ohlsen, D. R., and P. B. Rhines, 1997: Laboratory studies of equatorially trapped waves using ferrofluid. J. Fluid Mech., 338, 3558, doi:10.1017/S0022112096004776.

    • Search Google Scholar
    • Export Citation
  • Okuno, A., and A. Masuda, 2003: Effect of horizontal divergence on the geostrophic turbulence on a beta-plane: Suppression of the Rhines effect. Phys. Fluids, 15, 56, doi:10.1063/1.1524188.

    • Search Google Scholar
    • Export Citation
  • Orsi, A., T. Whitworth, and W. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, doi:10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Panetta, R., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50, 20732106, doi:10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., G. Buzyna, and W. W. Fowlis, 1974: Synoptic features and energetics of wave-amplitude vacillation in a rotating, differentially-heated fluid. J. Atmos. Sci., 31, 622645, doi:10.1175/1520-0469(1974)031<0622:SFAEOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., G. Buzyna, and R. Kung, 1980a: Relationships among eddy fluxes of heat eddy temperature variances and basic state temperature parameters in thermally driven rotating fluids. J. Atmos. Sci., 37, 25772599, doi:10.1175/1520-0469(1980)037<2577:RAEFOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., G. Buzyna, and R. Kung, 1980b: Time-dependent modes of behavior of thermally driven rotating fluids. J. Atmos. Sci., 37, 21292149, doi:10.1175/1520-0469(1980)037<2129:TDMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Read, P. L., 1985: Finite-amplitude, neutral baroclinic eddies and mean flows in an internally heated rotating fluid: 1. Numerical simulations and quasi-geostrophic free modes. Dyn. Atmos. Oceans, 9, 135207, doi:10.1016/0377-0265(85)90003-X.

    • Search Google Scholar
    • Export Citation
  • Read, P. L., 2001: Transition to geostrophic turbulence in the laboratory, and as a paradigm in atmospheres and oceans. Surv. Geophys., 22, 265317, doi:10.1023/A:1013790802740.

    • Search Google Scholar
    • Export Citation
  • Read, P. L., 2005: From mixing to geostrophy: Geostrophic turbulence in atmospheres, oceans, and the laboratory. Marine Turbulence: Theories, Observations, and Models, H. Z. Baumert, J. H. Simpson, and J. Sundermann, Eds., Cambridge University Press, 406–422.

  • Read, P. L., Y. H. Yamazaki, S. R. Lewis, P. D. Williams, K. Miki-Yamazaki, J. Sommeria, H. Didelle, and A. Fincham, 2004: Jupiter’s and Saturn’s convectively driven banded jets in the laboratory. Geophys. Res. Lett., 31, L22701, doi:10.1029/2004GL020106.

    • Search Google Scholar
    • Export Citation
  • Read, P. L., Y. H. Yamazaki, S. R. Lewis, P. D. Williams, R. Wordsworth, K. Miki-Yamazaki, J. Sommeria, and H. Didelle, 2007: Dynamics of convectively driven banded jets in the laboratory. J. Atmos. Sci., 64, 40314052, doi:10.1175/2007JAS2219.1.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417443, doi:10.1017/S0022112075001504.

  • Rhines, P. B., 1994: Jets. Chaos, 4, 313339, doi:10.1063/1.166011.

  • Saito, I., and K. Ishioka, 2013: Angular distribution of energy spectrum in two-dimensional β-plane turbulence in the long-wave limit. Phys. Fluids,25, 076602, doi:10.1063/1.4813808.

  • Salmon, R., 1978: Two-layer quasi-geostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn., 10, 2552, doi:10.1080/03091927808242628.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1980: Geostrophic turbulence. Topics in Ocean Physics, A. Osborn and P. Malanotte-Rizzoli, Eds., North-Holland, 30–78.

  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics.Oxford University Press, 378 pp.

  • Scott, R. K., and D. G. Dritschel, 2012: The structure of zonal jets in geostrophic turbulence. J. Fluid Mech., 711, 576598, doi:10.1017/jfm.2012.410.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and A.-S. Tissier, 2012: The generation of zonal jets by large-scale mixing. Phys. Fluids,24, 126601, doi:10.1063/1.4771991.

  • Sinha, B., and K. Richards, 1999: Jet structure and scaling in Southern Ocean models. J. Phys. Oceanogr., 29, 11431155, doi:10.1175/1520-0485(1999)029<1143:JSASIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slavin, A. G., and Y. D. Afanasyev, 2012: Multiple zonal jets on the polar beta plane. Phys. Fluids,24, 016603, doi:10.1063/1.3678017.

  • Smith, K. S., and G. K. Vallis, 2001: The scales and equilibration of midocean eddies: Freely evolving flow. J. Phys. Oceanogr., 31, 554571, doi:10.1175/1520-0485(2001)031<0554:TSAEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2007: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37, 13941412, doi:10.1175/JPO3111.1.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2009: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res., 114, C11018, doi:10.1029/2008JC005108.

    • Search Google Scholar
    • Export Citation
  • Sommeria, J., 1991: Experiments on vortices and Rossby waves in eastward and westward jets. Nonlinear Topics in Ocean Physics, A. R. Osborne, Ed., North-Holland, 227–269.

  • Sommeria, J., S. Meyers, and H. Swinney, 1989: Laboratory model of a planetary eastward jet. Nature, 337, 5861, doi:10.1038/337058a0.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2013: Dense water formation around islands. J. Geophys. Res. Oceans, 118, 25072519, doi:10.1002/jgrc.20185.

  • Sukoriansky, S., B. Galperin, and N. Dikovskaya, 2002: Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets. Phys. Rev. Lett.,89, 124501, doi:10.1103/PhysRevLett.89.124501.

  • Sukoriansky, S., N. Dikovskaya, and B. Galperin, 2007: On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci., 64, 33123327, doi:10.1175/JAS4013.1.

    • Search Google Scholar
    • Export Citation
  • Thielicke, W., 2014: The flapping flight of birds–Analysis and application. Ph.D. Thesis, Rijksuniversiteit Groningen.

  • Thielicke, W., and E. J. Stamhuis, 2010: PIVlab version 1.32. MATLAB. [Available online at http://pivlab.blogspot.com/.]

  • Treguier, A. M., and R. L. Panetta, 1994: Multiple zonal jets in a quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 24, 22632277, doi:10.1175/1520-0485(1994)024<2263:MZJIAQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., N. M. Hogg, M. E. Maltrud, K. G. Speer, and V. Thierry, 2003: The origin of deep zonal flows in the Brazil basin. J. Phys. Oceanogr., 33, 580599, doi:10.1175/1520-0485(2003)033<0580:TOODZF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation.Cambridge University Press, 745 pp.

  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, doi:10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, A., 2010: The atmosphere, the annulus and quasi-geostrophic theory. Astron. Geophys., 51, 4.24–4.27, doi:10.1111/j.1468-4004.2010.51424.x.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1978: Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci., 35, 13991426, doi:10.1175/1520-0469(1978)035<1399:PCBROJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wordsworth, R. D., 2009: Theoretical and experimental investigations of turbulent jet formation in planetary fluid dynamics. D.Phil. thesis, University of Oxford, 133 pp.

  • Wordsworth, R. D., P. L. Read, and Y. H. Yamazaki, 2008: Turbulence, waves, and jets in a differentially heated rotating annulus experiment. Phys. Fluids,20, 126602, doi:10.1063/1.2990042.

  • Xu, Y., and L.-L. Fu, 2011: Global Variability of the wavenumber spectrum of oceanic mesoscale turbulence. J. Phys. Oceanogr., 41, 802809, doi:10.1175/2010JPO4558.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Y. Afanasyev, 2014: Beta-plane turbulence: Experiments with altimetry. Phys. Fluids,26, 026602, doi:10.1063/1.4864339.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1954 1525 849
PDF Downloads 354 96 5