Water Mass Transformation in Salinity–Temperature Space

Magnus Hieronymus Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Magnus Hieronymus in
Current site
Google Scholar
PubMed
Close
,
Johan Nilsson Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Johan Nilsson in
Current site
Google Scholar
PubMed
Close
, and
Jonas Nycander Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Jonas Nycander in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article presents a new framework for studying water mass transformations in salinity–temperature space that can, with equal ease, be applied to study water mass transformation in spaces defined by any two conservative tracers. It is shown how the flow across isothermal and isohaline surfaces in the ocean can be quantified from knowledge of the nonadvective fluxes of heat and salt. It is also shown how these cross-isothermal and cross-isohaline flows can be used to form a continuity equation in salinity–temperature space. These flows are then quantified in a state-of-the-art ocean model. Two major transformation cells are found: a tropical cell driven primarily by surface fluxes and dianeutral diffusion and a conveyor belt cell where isoneutral diffusion is also important. Both cells are similar to cells found in earlier work on the thermohaline streamfunction. A key benefit with this framework over a streamfunction approach is that transformation due to different diabatic processes can be studied individually. The distributions of volume and surface area in ST space are found to be useful for determining how transformations due to these different processes affect the water masses in the model. The surface area distribution shows that the water mass transformations due to surface fluxes tend to be directed away from ST regions that occupy large areas at the sea surface.

Corresponding author address: Magnus Hieronymus, Dept. of Meteorology, Stockholm University, Stockholm S-10691, Sweden. E-mail: magnus@misu.su.se

Abstract

This article presents a new framework for studying water mass transformations in salinity–temperature space that can, with equal ease, be applied to study water mass transformation in spaces defined by any two conservative tracers. It is shown how the flow across isothermal and isohaline surfaces in the ocean can be quantified from knowledge of the nonadvective fluxes of heat and salt. It is also shown how these cross-isothermal and cross-isohaline flows can be used to form a continuity equation in salinity–temperature space. These flows are then quantified in a state-of-the-art ocean model. Two major transformation cells are found: a tropical cell driven primarily by surface fluxes and dianeutral diffusion and a conveyor belt cell where isoneutral diffusion is also important. Both cells are similar to cells found in earlier work on the thermohaline streamfunction. A key benefit with this framework over a streamfunction approach is that transformation due to different diabatic processes can be studied individually. The distributions of volume and surface area in ST space are found to be useful for determining how transformations due to these different processes affect the water masses in the model. The surface area distribution shows that the water mass transformations due to surface fluxes tend to be directed away from ST regions that occupy large areas at the sea surface.

Corresponding author address: Magnus Hieronymus, Dept. of Meteorology, Stockholm University, Stockholm S-10691, Sweden. E-mail: magnus@misu.su.se
Save
  • Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

  • Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27, 581591, doi:10.1175/1520-0485(1997)027<0581:AMFIRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brambilla, E., L. D. Talley, and P. E. Robbins, 2008: Subpolar mode water in the northeastern Atlantic: 2. Origin and transformation. J. Geophys. Res., 113, C04026, doi:10.1029/2006JC004063.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A. M. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104, doi:10.1016/j.ocemod.2009.10.005.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., and J. L. Sarmiento, 1985: Modeling ocean circulation. Advances in Geophysics, Vol. 28, Academic Press, 433–459, doi:10.1016/S0065-2687(08)60232-0.

  • Burchard, H., and H. Rennau, 2008: Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Modell., 20, 293311, doi:10.1016/j.ocemod.2007.10.003.

    • Search Google Scholar
    • Export Citation
  • Döös, K., J. Nilsson, J. Nycander, L. Brodeau, and M. Ballarotta, 2012: The world ocean thermohaline circulation. J. Phys. Oceanogr., 42, 14451460, doi:10.1175/JPO-D-11-0163.1.

    • Search Google Scholar
    • Export Citation
  • Emery, W., and J. Meincke, 1986: Global water masses: Summary and review. Oceanol. Acta, 9, 383391.

  • Ferrari, R., and D. Ferreira, 2011: What processes drive the ocean heat transport. Ocean Modell., 38, 171186, doi:10.1016/j.ocemod.2011.02.013.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. M. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 609–12 646, doi:10.1029/97JC00480.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., Y. Groris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 17916 193, doi:10.1029/JC095iC09p16179.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. D. Zika, T. J. McDougall, B. M. Sloyan, and F. Laliberté, 2014: The representation of ocean circulation and variability in thermodynamic coordinates. J. Phys. Oceanogr., 44, 1735–1750, doi:10.1175/JPO-D-13-0213.1.

    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Nycander, 2013a: The budgets of heat and salinity in NEMO. Ocean Modell., 67, 2838, doi:10.1016/j.ocemod.2013.03.006.

    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Nycander, 2013b: The buoyancy budget with a nonlinear equation of state. J. Phys. Oceanogr., 43, 176186, doi:10.1175/JPO-D-12-063.1.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., D. R. Jackett, and T. J. McDougall, 1996: The meridional overturning cells of a world ocean model in neutral coordinates. J. Phys. Oceanogr., 26, 775791, doi:10.1175/1520-0485(1996)026<0775:TMOCOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, B. Blanke, and S. Speich, 2008a: The role of Southern Ocean surface forcing and mixing in the global conveyor. J. Phys. Oceanogr., 38, 13771400, doi:10.1175/2008JPO3519.1.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008b: Water-mass transformation in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376, doi:10.1175/2007JPO3464.1.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., K. B. Rodgers, I. Stendardo, O. Aumont, G. Madec, L. Bopp, O. Mangoni, and M. Ribera, 2011: Water masses as a unifying framework for understanding the Southern Ocean carbon cycle. Biogeosciences, 8, 10311052, doi:10.5194/bg-8-1031-2011.

    • Search Google Scholar
    • Export Citation
  • Kjellsson, J., K. Döös, F. B. Lalibert, and J. D. Zika, 2014: The atmospheric general circulation in thermodynamical coordinates. J. Atmos. Sci., 71, 916928, doi:10.1175/JAS-D-13-0173.1.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, doi:10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de Modelisation de l’Institut Pierre-Simon Laplace 27, 217 pp. [Available online at http://www.nemo-ocean.eu/content/download/5302/31828/file/NEMO_book.pdf.]

  • Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA 8.1 ocean general circulation model: Reference manual. Note du Pole de Modlisation de l’Institut Pierre-Simon Laplace 11, 97 pp. [Available online at http://www.nemo-ocean.eu/Media/Files/Doc_OPA8.1.]

  • Maqueda, M. A. M., and G. Holloway, 2006: Second-order moment advection scheme applied to Arctic Ocean simulation. Ocean Modell., 14, 197221, doi:10.1016/j.ocemod.2006.05.003.

    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201222, doi:10.1357/0022240973224373.

  • Marshall, J., and G. Nurser, 1991: A continuously stratified thermocline model incorporating a mixed layer of variable thickness and density. J. Phys. Oceanogr., 21, 17801792, doi:10.1175/1520-0485(1991)021<1780:ACSTMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res., 46, 545572, doi:10.1016/S0967-0637(98)00082-X.

    • Search Google Scholar
    • Export Citation
  • Maze, G., G. Forget, M. Buckley, J. Marshall, and I. Cerovecki, 2009: Using transformation and formation maps to study the role of air–sea heat fluxes in North Atlantic Eighteen Degree Water formation. J. Phys. Oceanogr., 39, 18181835, doi:10.1175/2009JPO3985.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Nikurashin, M., and G. K. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, doi:10.1175/JPO-D-11-0189.1.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., 1996: Mixing in the ocean produced by tropical cyclones. Tellus, 48A, 342355, doi:10.1034/j.1600-0870.1996.t01-1-00010.x.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., and H. Körnich, 2008: A conceptual model of the surface salinity distribution in the oceanic Hadley cell. J. Climate, 21, 65866598, doi:10.1175/2008JCLI2284.1.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, doi:10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Picard, G. L., and W. J. Emery, 1982: Descriptive Physical Oceanography. 4th ed. Pergamon Press, 249 pp.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. S. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Speer, K. G., 1993: Conversion among North Atlantic surface water types. Tellus, 45A, 7279, doi:10.1034/j.1600-0870.1993.00006.x.

  • Speer, K. G., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, doi:10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Speer, K. G., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123222, doi:10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Swift, J. H., 1984: The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic. Deep-Sea Res., 31, 13391355, doi:10.1016/0198-0149(84)90005-0.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., 1986: On the role of interior mixing and air-sea fluxes in determining the stratification and circulation of the ocean. J. Phys. Oceanogr., 16, 680692, doi:10.1175/1520-0485(1986)016<0680:OTROIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1977: A theoretical framework for the description of estuaries. Tellus, 29, 128136, doi:10.1111/j.2153-3490.1977.tb00716.x.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and the thermal circulation in the ocean. Tellus, 34, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1959: An advective model of the ocean thermocline. Tellus, 11, 309318, doi:10.1111/j.2153-3490.1959.tb00036.x.

  • Wijffels, S. E., R. W. Schmitt, H. L. Bryden, and A. Stigebrandt, 1992: Transport of freshwater by the oceans. J. Phys. Oceanogr., 22, 155162, doi:10.1175/1520-0485(1992)022<0155:TOFBTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Worthington, L. V., 1981: The water masses of the world ocean: Some results of a fine-scale census. Evolution of Physical Oceanography, MIT Press, 42–69.

  • Zika, J. D., M. H. England, and W. P. Sijp, 2012: The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 42, 708724, doi:10.1175/JPO-D-11-0139.1.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., W. P. Sijp, and M. H. England, 2013: Vertical heat transport by ocean circulation and the role of mechanical and haline forcing. J. Phys. Oceanogr., 43, 20952112, doi:10.1175/JPO-D-12-0179.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1791 823 198
PDF Downloads 973 215 35