A Description of Local and Nonlocal Eddy–Mean Flow Interaction in a Global Eddy-Permitting State Estimate

Ru Chen Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ru Chen in
Current site
Google Scholar
PubMed
Close
,
Glenn R. Flierl Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Glenn R. Flierl in
Current site
Google Scholar
PubMed
Close
, and
Carl Wunsch Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts

Search for other papers by Carl Wunsch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The assumption that local baroclinic instability dominates eddy–mean flow interactions is tested on a global scale using a dynamically consistent eddy-permitting state estimate. Interactions are divided into local and nonlocal. If all the energy released from the mean flow through eddy–mean flow interaction is used to support eddy growth in the same region, or if all the energy released from eddies through eddy–mean flow interaction is used to feed back to the mean flow in the same region, eddy–mean flow interaction is local; otherwise, it is nonlocal. Different regions have different characters: in the subtropical region studied in detail, interactions are dominantly local. In the Southern Ocean and Kuroshio and Gulf Stream Extension regions, they are mainly nonlocal. Geographical variability of dominant eddy–eddy and eddy–mean flow processes is a dominant factor in understanding ocean energetics.

Corresponding author address: Ru Chen, Scripps Institution of Oceanography, University of California, San Diego, 8622 Kennel Way, La Jolla, CA 92037. E-mail: ruchen@alum.mit.edu

Abstract

The assumption that local baroclinic instability dominates eddy–mean flow interactions is tested on a global scale using a dynamically consistent eddy-permitting state estimate. Interactions are divided into local and nonlocal. If all the energy released from the mean flow through eddy–mean flow interaction is used to support eddy growth in the same region, or if all the energy released from eddies through eddy–mean flow interaction is used to feed back to the mean flow in the same region, eddy–mean flow interaction is local; otherwise, it is nonlocal. Different regions have different characters: in the subtropical region studied in detail, interactions are dominantly local. In the Southern Ocean and Kuroshio and Gulf Stream Extension regions, they are mainly nonlocal. Geographical variability of dominant eddy–eddy and eddy–mean flow processes is a dominant factor in understanding ocean energetics.

Corresponding author address: Ru Chen, Scripps Institution of Oceanography, University of California, San Diego, 8622 Kennel Way, La Jolla, CA 92037. E-mail: ruchen@alum.mit.edu
Save
  • Adcroft, A., J.-M. Campin, C. Hill, and J. Marshall, 2004: Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev., 132, 28452863, doi:10.1175/MWR2823.1.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., 2000: Generation of mid-ocean eddies: The local baroclinic instability hypothesis. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 290 pp.

  • Arbic, B. K., and G. R. Flierl, 2004: Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to midocean eddies. J. Phys. Oceanogr., 34, 22572273, doi:10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and Coauthors, 2009: Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models. J. Geophys. Res., 114, C02024, doi:10.1029/2008JC005072.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., and A. V. Fedorov, 2010: How much energy is transferred from the winds to the thermocline on ENSO time scales? J. Climate, 23, 15631580, doi:10.1175/2009JCLI2914.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., 2013: Energy pathways and structures of oceanic eddies from the ECCO2 state estimate and simplified models. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 206 pp.

  • Cox, M., 1987: An eddy-resolving numerical model of the ventilated thermocline: Time dependence. J. Phys. Oceanogr., 17, 10441056, doi:10.1175/1520-0485(1987)017<1044:AERNMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429442, doi:10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eden, C., R. J. Greatbatch, and J. Willebrand, 2007: A diagnosis of thickness fluxes in an eddy-resolving model. J. Phys. Oceanogr., 37, 727742, doi:10.1175/JPO2987.1.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1982: Pulse asymptotics of the Charney baroclinic instability problem. J. Atmos. Sci., 39, 507517, doi:10.1175/1520-0469(1982)039<0507:PAOTCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62A, 92108, doi:10.1111/j.1600-0870.2009.00432.x.

    • Search Google Scholar
    • Export Citation
  • Forget, G., and C. Wunsch, 2007: Estimated global hydrographic variability. J. Phys. Oceanogr., 37, 19972008, doi:10.1175/JPO3072.1.

  • Fu, L.-L., 2009: Pattern and velocity of propagation of the global ocean eddy variability. J. Geophys. Res., 114, C11017, doi:10.1029/2009JC005349.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and G. R. Flierl, 1980: Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans, 4, 219246, doi:10.1016/0377-0265(80)90029-9.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. Oceanogr. Abstr., 21, 499528, doi:10.1016/0011-7471(74)90010-2.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., X. Zhai, J. D. Kohlmann, and L. Czeschel, 2010: Ocean eddy momentum fluxes at the latitudes of the Gulf Stream and the Kuroshio Extensions as revealed by satellite data. Ocean Dyn., 60, 617628, doi:10.1007/s10236-010-0282-6.

    • Search Google Scholar
    • Export Citation
  • Grooms, I., L.-P. Nadeau, and K. S. Smith, 2013: Mesoscale eddy energy locality in an idealized ocean model. J. Phys. Oceanogr., 43, 19111923, doi:10.1175/JPO-D-13-036.1.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., 1991: Energetics of the Kuroshio Extension at 35°N, 152°E. J. Phys. Oceanogr., 21, 958975, doi:10.1175/1520-0485(1991)021<0958:EOTKEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta-plane. J. Atmos. Sci., 53, 946952, doi:10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., and J. Pedlosky, 1993: Time-dependent isolated anomalies in zonal flows. J. Fluid Mech., 251, 377409, doi:10.1017/S0022112093003453.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., and J. Pedlosky, 1995: Large-amplitude coherent anomalies in baroclinic zonal flows. J. Atmos. Sci., 52, 16151629, doi:10.1175/1520-0469(1995)052<1615:LACAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2004: Ocean, energy flows in. Encyclopedia of Energy, C. J. Cleveland, Ed., Elsevier, 497–509, doi:10.1016/B0-12-176480-X/00053-X.

  • Huang, R. X., 2005: Available potential energy in the world’s oceans. J. Mar. Res., 63, 141158, doi:10.1357/0022240053693770.

  • Huang, R. X., 2010: Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge University Press, 806 pp.

  • Johnson, T. J., R. H. Stewart, C. K. Shum, and B. D. Tapley, 1992: Distribution of Reynolds stress carried by mesoscale variability in the Antarctic Circumpolar Current. Geophys. Res. Lett., 19, 12011204, doi:10.1029/92GL01287.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and I. M. Cohen, 2004: Fluid Mechanics. Elsevier Academic Press, 759 pp.

  • Kuo, A., R. A. Plumb, and J. Marshall, 2005: Transformed Eulerian-mean theory. Part II: Potential vorticity homogenization, and the equilibrium of a wind- and buoyancy-driven zonal flow. J. Phys. Oceanogr., 35, 175187, doi:10.1175/JPO-2670.1.

    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y. D., T. K. Chereskin, J. Sprintall, and J. L. McClean, 2011: Near-surface eddy heat and momentum fluxes in the Antarctic Circumpolar Current in Drake Passage. J. Phys. Oceanogr., 41, 13851407, doi:10.1175/JPO-D-10-05017.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2007: Localized multi-scale energy and vorticity analysis: II. Finite-amplitude instability theory and validation. Dyn. Atmos. Oceans, 44, 5176, doi:10.1016/j.dynatmoce.2007.04.001.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Margules, M., 1905: On the energy of storms. Smithson. Misc. Collect., 51, 533595.

  • Marshall, J. C., 1984: Eddy-mean-flow interaction in a barotropic ocean model. Quart. J. Roy. Meteor. Soc., 110, 573590, doi:10.1002/qj.49711046502.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., W. R. Holland, and J. H. S. Chow, 1978: A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Oceans, 2, 213291, doi:10.1016/0377-0265(78)90018-0.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and Coauthors, 2005a: NASA supercomputer improves prospects for ocean climate research. Eos, Trans. Amer. Geophys. Union, 86, 89–96, doi:10.1029/2005EO090002.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., I. Fukumori, and T. Lee, 2005b: Using Green’s functions to calibrate an ocean general circulation model. Mon. Wea. Rev., 133, 12241240, doi:10.1175/MWR2912.1.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlock, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Ramonville Saint-Agne, France, 13–21. [Available online at http://www.mercator-ocean.fr/eng/actualites-agenda/newsletter/newsletter-Newsletter-31-The-GODAE-project.]

  • Morrow, R., J. Church, R. Coleman, D. Chelton, and N. White, 1992: Eddy momentum flux and its contribution to the Southern Ocean momentum balance. Nature, 357, 482484, doi:10.1038/357482a0.

    • Search Google Scholar
    • Export Citation
  • Nishida, H., and W. White, 1982: Horizontal eddy fluxes of momentum and kinetic energy in the near-surface of the Kuroshio Extension. J. Phys. Oceanogr., 12, 160170, doi:10.1175/1520-0485(1982)012<0160:HEFOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oort, A., S. Ascher, S. Levitus, and J. Peixóto, 1989: New estimates of the available potential energy in the World Ocean. J. Geophys. Res., 94, 31873200, doi:10.1029/JC094iC03p03187.

    • Search Google Scholar
    • Export Citation
  • Oort, A., L. Anderson, and J. Peixóto, 1994: Estimates of the energy cycle of the oceans. J. Geophys. Res., 99, 76657688, doi:10.1029/93JC03556.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50, 20732106, doi:10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174, doi:10.1175/JPO-2669.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., and J. C. McWilliams, 1974: The baroclinic instability of the open ocean. J. Phys. Oceanogr., 4, 281294, doi:10.1175/1520-0485(1974)004<0281:TBIOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 23282342, doi:10.1175/JPO-D-11-024.1.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1978: Two-layer quasigeostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn., 10, 2552, doi:10.1080/03091927808242628.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, doi:10.1175/JPO2771.1.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the world ocean. Deep-Sea Res. I, 56, 295304, doi:10.1016/j.dsr.2008.09.010.

    • Search Google Scholar
    • Export Citation
  • Sen, A., R. B. Scott, and B. K. Arbic, 2008: Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom boundary layer drag: Computations from current-meter data. Geophys. Res. Lett., 35, L09606, doi:10.1029/2008GL033407.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, doi:10.1357/002224007783649484.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2000: Generation of strong mesoscale eddies by weak ocean gyres. J. Mar. Res., 58, 97116, doi:10.1357/002224000321511214.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2013: Available potential energy and exergy in stratified fluids. Annu. Rev. Fluid Mech., 45, 3558, doi:10.1146/annurev-fluid-011212-140620.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., 2008: The atmospheric ocean: Eddies and jets in the Antarctic Circumpolar Current. Philos. Trans. Roy. Soc. London, 366, 45294541, doi:10.1098/rsta.2008.0196.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257278, doi:10.1175/2009JPO4218.1.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, doi:10.1175/2011JPO4404.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Venaille, A., G. K. Vallis, and K. S. Smith, 2011: Baroclinic turbulence in the ocean: Analysis with primitive equation and quasigeostrophic simulations. J. Phys. Oceanogr., 41, 16051623, doi:10.1175/JPO-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., and L.-L. Fu, 2008: The role of vorticity fluxes in the dynamics of the Zapiola anticyclone. J. Geophys. Res., 113, C11015, doi:10.1029/2008JC004841.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., T. Lee, and L.-L. Fu, 2008: Eddy-induced meridional heat transport in the ocean. Geophys. Res. Lett., 35, L20601, doi:10.1029/2008GL035490.

    • Search Google Scholar
    • Export Citation
  • von Storch, J. S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, doi:10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S. N., and S. R. Jayne, 2011: Eddy-mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, doi:10.1175/2010JPO4477.1.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J., 1975: Mean flow generated by circulation on a β-plane: An analogy with the moving flame experiment. Tellus, 27, 358364, doi:10.1111/j.2153-3490.1975.tb01686.x.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., and R. A. Morrow, 1994: Eddy kinetic energy and momentum flux in the Southern Ocean: Comparison of a global eddy-resolving model with altimeter, drifter, and current-meter data. J. Geophys. Res., 99, 79037916, doi:10.1029/93JC03505.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., C. Wilson, and C. W. Hughes, 2007: Ocean and atmosphere storm tracks: The role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 22672289, doi:10.1175/JPO3120.1.

    • Search Google Scholar
    • Export Citation
  • Witter, D. L., and D. B. Chelton, 1998: Eddy–mean flow interaction in zonal oceanic jet flow along zonal ridge topography. J. Phys. Oceanogr., 28, 20192039, doi:10.1175/1520-0485(1998)028<2019:EMFIIZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wortham, C., 2013: A multi-dimensional spectral description of ocean variability with applications. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 184 pp.

  • Wortham, C., and C. Wunsch, 2014: A multidimensional spectral description of ocean variability. J. Phys. Oceanogr., 44, 944966, doi:10.1175/JPO-D-13-0113.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., P. Heimbach, R. Ponte, I. Fukumori, and ECCO-Consortium members, 2009: The global general circulation of the ocean estimated by the ECCO-Consortium. Oceanography, 22, 88103, doi:10.5670/oceanog.2009.41.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., and D. P. Marshall, 2013: Vertical eddy energy fluxes in the North Atlantic subtropical and subpolar gyres. J. Phys. Oceanogr., 43, 95103, doi:10.1175/JPO-D-12-021.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, D. P. Marshall, and C. Wunsch, 2012: On the wind power input to the ocean general circulation. J. Phys. Oceanogr., 42, 13571365, doi:10.1175/JPO-D-12-09.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1002 383 27
PDF Downloads 938 370 31