Approximate Stokes Drift Profiles in Deep Water

Øyvind Breivik European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, United Kingdom

Search for other papers by Øyvind Breivik in
Current site
Google Scholar
PubMed
Close
,
Peter A. E. M. Janssen European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, United Kingdom

Search for other papers by Peter A. E. M. Janssen in
Current site
Google Scholar
PubMed
Close
, and
Jean-Raymond Bidlot European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, United Kingdom

Search for other papers by Jean-Raymond Bidlot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A deep-water approximation of the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, namely, the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the Interim ECMWF Re-Analysis (ERA-Interim) and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis–Stokes force depends on the magnitude and direction of the Stokes drift profile, and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.

Author ORCID: http://orcid.org/0000-0002-2900-8458.

Corresponding author address: Øyvind Breivik, ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom. E-mail: oyvind.breivik@ecmwf.int

Abstract

A deep-water approximation of the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, namely, the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the Interim ECMWF Re-Analysis (ERA-Interim) and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis–Stokes force depends on the magnitude and direction of the Stokes drift profile, and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.

Author ORCID: http://orcid.org/0000-0002-2900-8458.

Corresponding author address: Øyvind Breivik, ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom. E-mail: oyvind.breivik@ecmwf.int
Save
  • Abramowitz, M., and I. A. Stegun, Eds., 1972: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover, 1064 pp.

  • Ardhuin, F., and A. Jenkins, 2006: On the interaction of surface waves and upper ocean turbulence. J. Phys. Oceanogr., 36, 551557, doi:10.1175/JPO2862.1.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., L. Marié, N. Rascle, P. Forget, and A. Roland, 2009: Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr., 39, 28202838, doi:10.1175/2009JPO4169.1.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett.,39, L18605, doi:10.1029/2012GL052932.

  • Bidlot, J., P. Janssen, and S. Abdalla, 2007: A revised formulation of ocean wave dissipation and its model impact. ECMWF Tech. Memo. 509, 27 pp.

  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104, 76497666, doi:10.1029/98JC02622.

    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., A. Allen, C. Maisondieu, J.-C. Roth, and B. Forest, 2012: The leeway of shipping containers at different immersion levels. Ocean Dyn., 62, 741752, doi:10.1007/s10236-012-0522-z.

    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., A. Allen, C. Maisondieu, and M. Olagnon, 2013a: Advances in search and rescue at sea. Ocean Dyn., 63, 8388, doi:10.1007/s10236-012-0581-1.

    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., P. Janssen, and J. Bidlot, 2013b: Approximate Stokes drift profiles in deep water. ECMWF Tech. Memo. 716, 18 pp.

  • Carniel, S., M. Sclavo, L. H. Kantha, and C. A. Clayson, 2005: Langmuir cells and mixing in the upper ocean. Nuovo Cimento Geophys. Space Phys.,28C, 33–54, doi:10.1393/ncc/i2005-10022-8.

  • Christensen, K. H., J. Röhrs, B. Ward, I. Fer, G. Broström, Ø. Saetra, and Ø. Breivik, 2013: Surface wave measurements using a ship-mounted ultrasonic altimeter. Methods Oceanogr.,6, 1–15, doi:10.1016/j.mio.2013.07.002.

  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2013: IFS documentation—CY40r1: Part VII: ECMWF wave model. ECMWF Model Doc., 79 pp. [Available online at http://old.ecmwf.int/research/ifsdocs/CY40r1/IFSPart7.pdf.]

  • Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, 1997: A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res., 102, 15 78115 796, doi:10.1029/97JC00467.

    • Search Google Scholar
    • Export Citation
  • Gradshteyn, I., and I. Ryzhik, 2007: Table of Integrals, Series, and Products. 7th ed. Academic Press, 1221 pp.

  • Grant, A. L., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, doi:10.1175/2009JPO4119.1.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1970: Wave-driven inertial oscillations. Geophys. Astrophys. Fluid Dyn., 1, 463502, doi:10.1080/03091927009365783.

  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsches Hydrographisches Institut Rep., 95 pp.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L., 2007: Waves in Oceanic and Coastal Waters. Cambridge University Press, 387 pp.

  • Janssen, P., 2004: The Interaction of Ocean Waves and Wind. Cambridge University Press, 300 pp.

  • Janssen, P., 2012: Ocean wave effects on the daily cycle in SST. J. Geophys. Res.,117, C00J32, doi:10.1029/2012JC007943.

  • Janssen, P., O. Saetra, C. Wettre, H. Hersbach, and J. Bidlot, 2004: Impact of the sea state on the atmosphere and ocean. Annales Hydrographiques, Vol. 3-772, Service Hydrographique et Océanographique de la Marine, 3.1–3.23.

  • Janssen, P., and Coauthors, 2013: Air-sea interaction and surface waves. ECMWF Tech. Memo. 712, 36 pp.

  • Jenkins, A. D., 1987: Wind and wave induced currents in a rotating sea with depth-varying eddy viscosity. J. Phys. Oceanogr., 17, 938951, doi:10.1175/1520-0485(1987)017<0938:WAWICI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 2004: On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell., 6, 101124, doi:10.1016/S1463-5003(02)00062-8.

    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, doi:10.1029/JC074i028p06991.

  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427, doi:10.1146/annurev.fl.15.010183.002135.

    • Search Google Scholar
    • Export Citation
  • Madec, G., and Coauthors, 2012: NEMO ocean engine version 3.4. Institut Pierre Simon Laplace Note du Pole de Modélisation 27, 367 pp.

  • McWilliams, J. C., and J. M. Restrepo, 1999: The wave-driven ocean circulation. J. Phys. Oceanogr., 29, 25232540, doi:10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, doi:10.1016/S1353-2561(01)00041-X.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • Mogensen, K., S. Keeley, and P. Towers, 2012: Coupling of the NEMO and IFS models in a single executable. ECMWF Tech. Memo. 673, 23 pp.

  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 4, 426434, doi:10.1017/S0022112058000550.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, doi:10.1017/S0022112085002221.

    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., Jr., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, doi:10.1029/JZ069i024p05181.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, doi:10.1029/2007JC004205.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., D. M. Lewis, and S. E. Belcher, 2005: The role of wave-induced Coriolis–Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35, 444457, doi:10.1175/JPO2701.1.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 2007: Numerical Recipes in C. 3rd ed. Cambridge University Press, 1235 pp.

  • Rascle, N., and F. Ardhuin, 2013: A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modell., 70, 174188, doi:10.1016/j.ocemod.2012.12.001.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, and E. Terray, 2006: Drift and mixing under the ocean surface: A coherent one-dimensional description with application to unstratified conditions. J. Geophys. Res.,111, C03016, doi:10.1029/2005JC003004.

  • Ris, R. C., L. H. Holthuijsen, and N. Booij, 1999: A third-generation wave model for coastal regions: 2. Verification. J. Geophys. Res.,104, 7667–7681, doi:10.1029/1998JC900123.

  • Röhrs, J., K. Christensen, L. Hole, G. Broström, M. Drivdal, and S. Sundby, 2012: Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dyn., 62, 15191533, doi:10.1007/s10236-012-0576-y.

    • Search Google Scholar
    • Export Citation
  • Saetra, Ø., J. Albretsen, and P. Janssen, 2007: Sea-state-dependent momentum fluxes for ocean modeling. J. Phys. Oceanogr., 37, 27142725, doi:10.1175/2007JPO3582.1.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, doi:10.1029/94JC03202.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 666 pp.

  • Tamura, H., Y. Miyazawa, and L.-Y. Oey, 2012: The Stokes drift and wave induced-mass flux in the North Pacific. J. Geophys. Res., 117, C08021, doi:10.1029/2012JC008113.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M., and S. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech., 458, 229267, doi:10.1017/S0022112002007838.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579, doi:10.1146/annurev.fluid.36.052203.071431.

  • Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, 782797, doi:10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., B. Balasubramaniyan, L. D. Burroughs, D. V. Chalikov, Y. Y. Chao, H. S. Chen, and V. M. Gerald, 2002: Development and implementation of wind-generated ocean surface wave models at NCEP. Wea. Forecasting, 17, 311333, doi:10.1175/1520-0434(2002)017<0311:DAIOWG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wamdi Group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 17751810, doi:10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webb, A., and B. Fox-Kemper, 2011: Wave spectral moments and Stokes drift estimation. Ocean Modell., 40, 273288, doi:10.1016/j.ocemod.2011.08.007.

    • Search Google Scholar
    • Export Citation
  • Weber, J., 1983: Steady wind- and wave-induced currents in the open ocean. J. Phys. Oceanogr., 13, 524530, doi:10.1175/1520-0485(1983)013<0524:SWAWIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1998: Guide to wave analysis and forecasting. 2nd ed. World Meteorological Organization Rep. 702, 168 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1456 600 37
PDF Downloads 1050 340 34