Biases in Thorpe-Scale Estimates of Turbulence Dissipation. Part I: Assessments from Large-Scale Overturns in Oceanographic Data

Benjamin D. Mater Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Benjamin D. Mater in
Current site
Google Scholar
PubMed
Close
,
Subhas K. Venayagamoorthy Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Subhas K. Venayagamoorthy in
Current site
Google Scholar
PubMed
Close
,
Louis St. Laurent Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Louis St. Laurent in
Current site
Google Scholar
PubMed
Close
, and
James N. Moum College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by James N. Moum in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Oceanic density overturns are commonly used to parameterize the dissipation rate of turbulent kinetic energy. This method assumes a linear scaling between the Thorpe length scale LT and the Ozmidov length scale LO. Historic evidence supporting LT ~ LO has been shown for relatively weak shear-driven turbulence of the thermocline; however, little support for the method exists in regions of turbulence driven by the convective collapse of topographically influenced overturns that are large by open-ocean standards. This study presents a direct comparison of LT and LO, using vertical profiles of temperature and microstructure shear collected in the Luzon Strait—a site characterized by topographically influenced overturns up to O(100) m in scale. The comparison is also done for open-ocean sites in the Brazil basin and North Atlantic where overturns are generally smaller and due to different processes. A key result is that LT/LO increases with overturn size in a fashion similar to that observed in numerical studies of Kelvin–Helmholtz (K–H) instabilities for all sites but is most clear in data from the Luzon Strait. Resultant bias in parameterized dissipation is mitigated by ensemble averaging; however, a positive bias appears when instantaneous observations are depth and time integrated. For a series of profiles taken during a spring tidal period in the Luzon Strait, the integrated value is nearly an order of magnitude larger than that based on the microstructure observations. Physical arguments supporting LT ~ LO are revisited, and conceptual regimes explaining the relationship between LT/LO and a nondimensional overturn size are proposed. In a companion paper, Scotti obtains similar conclusions from energetics arguments and simulations.

Corresponding author address: Subhas K. Venayagamoorthy, Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO 80523. E-mail: vskaran@colostate.edu

Abstract

Oceanic density overturns are commonly used to parameterize the dissipation rate of turbulent kinetic energy. This method assumes a linear scaling between the Thorpe length scale LT and the Ozmidov length scale LO. Historic evidence supporting LT ~ LO has been shown for relatively weak shear-driven turbulence of the thermocline; however, little support for the method exists in regions of turbulence driven by the convective collapse of topographically influenced overturns that are large by open-ocean standards. This study presents a direct comparison of LT and LO, using vertical profiles of temperature and microstructure shear collected in the Luzon Strait—a site characterized by topographically influenced overturns up to O(100) m in scale. The comparison is also done for open-ocean sites in the Brazil basin and North Atlantic where overturns are generally smaller and due to different processes. A key result is that LT/LO increases with overturn size in a fashion similar to that observed in numerical studies of Kelvin–Helmholtz (K–H) instabilities for all sites but is most clear in data from the Luzon Strait. Resultant bias in parameterized dissipation is mitigated by ensemble averaging; however, a positive bias appears when instantaneous observations are depth and time integrated. For a series of profiles taken during a spring tidal period in the Luzon Strait, the integrated value is nearly an order of magnitude larger than that based on the microstructure observations. Physical arguments supporting LT ~ LO are revisited, and conceptual regimes explaining the relationship between LT/LO and a nondimensional overturn size are proposed. In a companion paper, Scotti obtains similar conclusions from energetics arguments and simulations.

Corresponding author address: Subhas K. Venayagamoorthy, Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO 80523. E-mail: vskaran@colostate.edu
Save
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, doi:10.1175/JPO-D-11-073.1.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and Coauthors, 2014: Three-dimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr., 44, 850869, doi:10.1175/JPO-D-13-024.1.

    • Search Google Scholar
    • Export Citation
  • Chalamalla, V. K., and S. Sarkar, 2015: Mixing, dissipation rate, and their overturn-based estimates in a near-bottom turbulent flow driven by internal tides. J. Phys. Oceanogr., 45, 19691987, doi:10.1175/JPO-D-14-0057.1.

    • Search Google Scholar
    • Export Citation
  • Crawford, W. R., 1986: A comparison of length scales and decay times of turbulence in stably stratified flows. J. Phys. Oceanogr., 16, 18471854, doi:10.1175/1520-0485(1986)016<1847:ACOLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, doi:10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Dougherty, J. P., 1961: The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys., 21, 210213, doi:10.1016/0021-9169(61)90116-7.

    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche fracture zone. J. Phys. Oceanogr., 28, 19291945, doi:10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gargett, A., and T. Garner, 2008: Determining Thorpe scales from ship-lowered CTD density profiles. J. Atmos. Oceanic Technol., 25, 16571670, doi:10.1175/2008JTECHO541.1.

    • Search Google Scholar
    • Export Citation
  • Gibson, C. H., 1980: Fossil temperature, salinity, and vorticity turbulence in the ocean. Marine Turbulence Proceedings of the 11th International Liège Colloquium on Ocean Hydrodynamics, J. C. J. Nihoul, Ed., Elsevier Oceanography Series, Vol. 28, Elsevier, 221–257.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline. J. Geophys. Res., 92, 52495286, doi:10.1029/JC092iC05p05249.

  • Klymak, J. M., and S. M. Legg, 2010: A simple mixing scheme for models that resolve breaking internal waves. Ocean Modell., 33, 224234, doi:10.1016/j.ocemod.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, doi:10.1038/35003164.

    • Search Google Scholar
    • Export Citation
  • Luketina, D. A., and J. Imberger, 1989: Turbulence and entrainment in a buoyant surface plume. J. Geophys. Res., 94, 12 61912 636, doi:10.1029/JC094iC09p12619.

    • Search Google Scholar
    • Export Citation
  • Mater, B. D., and S. K. Venayagamoorthy, 2014: A unifying framework for parameterizing stably stratified shear-flow turbulence. Phys. Fluids, 26, 036601, doi:10.1063/1.4868142.

    • Search Google Scholar
    • Export Citation
  • Mater, B. D., S. M. Schaad, and S. K. Venayagamoorthy, 2013: Relevance of the Thorpe length scale in stably stratified turbulence. Phys. Fluids, 25, 076604, doi:10.1063/1.4813809.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101, 14 09514 109, doi:10.1029/96JC00507.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., The MIT Press, 264–291.

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean (English translation). Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 1, 853860.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., J. Toole, J. Ledwell, and R. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Rohr, J. J., E. C. Itsweire, K. N. Helland, and C. W. Van Atta, 1988: Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech., 195, 77111, doi:10.1017/S0022112088002332.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1994: Double diffusion in oceanography. Annu. Rev. Fluid Mech., 26, 255285, doi:10.1146/annurev.fl.26.010194.001351.

  • Schmitt, R. W., 1999: Spice and the demon. Science, 283, 498499, doi:10.1126/science.283.5401.498.

  • Scotti, A., 2015: Biases in Thorpe-scale estimates of turbulence dissipation. Part II: Energetics arguments from turbulence simulations. J. Phys. Oceanogr., 45, 25222543, doi:10.1175/JPO-D-14-0092.1.

    • Search Google Scholar
    • Export Citation
  • Seim, H. E., and M. C. Gregg, 1994: Detailed observations of a naturally occurring shear instability. J. Geophys. Res., 99, 10 04910 073, doi:10.1029/94JC00168.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., M.-H. Chang, Y.-T. Chang, S.-Y. Chao, O. Fringer, C. R. Jackson, and D. S. Ko, 2011: Modeling and prediction of internal waves in the South China Sea. Oceanography, 24, 8899, doi:10.5670/oceanog.2011.97.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2013: Marginal instability and deep cycle turbulence in the eastern equatorial Pacific Ocean. Geophys. Res. Lett., 40, 61816185, doi:10.1002/2013GL058403.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 19691992, doi:10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stansfield, K., C. Garrett, and R. Dewey, 2001: The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait. J. Phys. Oceanogr., 31, 34213434, doi:10.1175/1520-0485(2001)031<3421:TPDOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., 2012: Internal wave generation processes at deep-sills in the Luzon Passage region of the South China Sea. U.S. Office of Naval Research Tech. Rep., 11 pp.

  • St. Laurent, L. C., and R. W. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 14041424, doi:10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil basin. J. Phys. Oceanogr., 31, 34763495, doi:10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., H. L. Simmons, T. Y. Tang, and Y. Wang, 2011: Turbulent properties of internal waves in the South China Sea. Oceanography, 24, 7887, doi:10.5670/oceanog.2011.96.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1935: Statistical theory of turbulence. Proc. Roy. Soc. London, A151, 421444, doi:10.1098/rspa.1935.0158.

  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc., A286, 125181, doi:10.1098/rsta.1977.0112.

  • Thurnherr, A. M., L. St. Laurent, K. G. Speer, J. M. Toole, and J. R. Ledwell, 2005: Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr., 35, 13701381, doi:10.1175/JPO2773.1.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. W. Schmitt, and K. L. Polzin, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 11201123, doi:10.1126/science.264.5162.1120.

    • Search Google Scholar
    • Export Citation
  • Wesson, J. C., and M. C. Gregg, 1994: Mixing at Camarinal sill in the Strait of Gibraltar. J. Geophys. Res., 99, 98479878, doi:10.1029/94JC00256.

    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., T. M. Dillon, and L. Padman, 1993: Some statistical and dynamical properties of turbulence in the oceanic pycnocline. J. Geophys. Res., 98, 22 66522 679, doi:10.1029/93JC02352.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, doi:10.1017/S002211209500125X.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1104 371 33
PDF Downloads 1019 278 27