Analysis and Interpretation of Frequency–Wavenumber Spectra of Young Wind Waves

Fabien Leckler Service Hydrographique et Oceanographique de la Marine, Brest, France

Search for other papers by Fabien Leckler in
Current site
Google Scholar
PubMed
Close
,
Fabrice Ardhuin Ifremer, Laboratoire d’Océanographie Spatiale, Centre de Brest, and Laboratoire de Physique des Océans, UMR 6523 CNRS-IFREMER-IRD-UBO, Plouzané, France

Search for other papers by Fabrice Ardhuin in
Current site
Google Scholar
PubMed
Close
,
Charles Peureux Ifremer, Laboratoire d’Océanographie Spatiale, Centre de Brest, and Laboratoire de Physique des Océans, UMR 6523 CNRS-IFREMER-IRD-UBO, Plouzané, France

Search for other papers by Charles Peureux in
Current site
Google Scholar
PubMed
Close
,
Alvise Benetazzo Institute of Marine Sciences, National Research Council (CNR-ISMAR), Venice, Italy

Search for other papers by Alvise Benetazzo in
Current site
Google Scholar
PubMed
Close
,
Filippo Bergamasco Universit Ca’ Foscari di Venezia, Venice, Italy

Search for other papers by Filippo Bergamasco in
Current site
Google Scholar
PubMed
Close
, and
Vladimir Dulov Marine Hydrophysical Institute, Sebastopol, Russia

Search for other papers by Vladimir Dulov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The energy level and its directional distribution are key observations for understanding the energy balance in the wind-wave spectrum between wind-wave generation, nonlinear interactions, and dissipation. Here, properties of gravity waves are investigated from a fixed platform in the Black Sea, equipped with a stereo video system that resolves waves with frequency f up to 1.4 Hz and wavelengths from 0.6 to 11 m. One representative record is analyzed, corresponding to young wind waves with a peak frequency fp = 0.33 Hz and a wind speed of 13 m s−1. These measurements allow for a separation of the linear waves from the bound second-order harmonics. These harmonics are negligible for frequencies f up to 3 times fp but account for most of the energy at higher frequencies. The full spectrum is well described by a combination of linear components and the second-order spectrum. In the range 2fp to 4fp, the full frequency spectrum decays like f−5, which means a steeper decay of the linear spectrum. The directional spectrum exhibits a very pronounced bimodal distribution, with two peaks on either side of the wind direction, separated by 150° at 4fp. This large separation is associated with a significant amount of energy traveling in opposite directions and thus sources of underwater acoustic and seismic noise. The magnitude of these sources can be quantified by the overlap integral I(f), which is found to increase sharply from less than 0.01 at f = 2fp to 0.11 at f = 4fp and possibly up to 0.2 at f = 5fp, close to the 0.5π value proposed in previous studies.

Denotes Open Access content.

Corresponding author address: Fabrice Ardhuin, Ifremer, ZI de la Pointe du Diable, CS 10070, 29280 Plouzané, France. E-mail: ardhuin@ifremer.fr

Abstract

The energy level and its directional distribution are key observations for understanding the energy balance in the wind-wave spectrum between wind-wave generation, nonlinear interactions, and dissipation. Here, properties of gravity waves are investigated from a fixed platform in the Black Sea, equipped with a stereo video system that resolves waves with frequency f up to 1.4 Hz and wavelengths from 0.6 to 11 m. One representative record is analyzed, corresponding to young wind waves with a peak frequency fp = 0.33 Hz and a wind speed of 13 m s−1. These measurements allow for a separation of the linear waves from the bound second-order harmonics. These harmonics are negligible for frequencies f up to 3 times fp but account for most of the energy at higher frequencies. The full spectrum is well described by a combination of linear components and the second-order spectrum. In the range 2fp to 4fp, the full frequency spectrum decays like f−5, which means a steeper decay of the linear spectrum. The directional spectrum exhibits a very pronounced bimodal distribution, with two peaks on either side of the wind direction, separated by 150° at 4fp. This large separation is associated with a significant amount of energy traveling in opposite directions and thus sources of underwater acoustic and seismic noise. The magnitude of these sources can be quantified by the overlap integral I(f), which is found to increase sharply from less than 0.01 at f = 2fp to 0.11 at f = 4fp and possibly up to 0.2 at f = 5fp, close to the 0.5π value proposed in previous studies.

Denotes Open Access content.

Corresponding author address: Fabrice Ardhuin, Ifremer, ZI de la Pointe du Diable, CS 10070, 29280 Plouzané, France. E-mail: ardhuin@ifremer.fr
Save
  • Andrews, D. G., and M. E. McIntyre, 1978: On wave-action and its relatives.J. Fluid Mech., 89, 647–664, doi:10.1017/S0022112078002785; Corrigendum, 95, 796, doi:10.1017/S0022112079001737.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and T. H. C. Herbers, 2013: Noise generation in the solid earth, oceans and atmosphere, from nonlinear interacting surface gravity waves in finite depth. J. Fluid Mech., 716, 316–348, doi:10.1017/jfm.2012.548.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., L. Marié, N. Rascle, P. Forget, and A. Roland, 2009: Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr., 39, 28202838, doi:10.1175/2009JPO4169.1.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2013: A numerical model for ocean ultra-low frequency noise: Wave-generated acoustic-gravity and Rayleigh modes. J. Acoust. Soc. Amer., 134, 32423259, doi:10.1121/1.4818840.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., 1990: Equilibrium spectra of wind waves. J. Phys. Oceanogr., 20, 966984, doi:10.1175/1520-0485(1990)020<0966:ESOWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and O. M. Phillips, 1974: On the incipient breaking of small scale waves. J. Fluid Mech., 65, 647656, doi:10.1017/S0022112074001583.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., I. S. F. Jones, and J. C. Trinder, 1989: Wavenumber spectra of short gravity waves. J. Fluid Mech., 198, 321344, doi:10.1017/S0022112089000157.

    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., 2006: Measurements of short water waves using stereo matched image sequences. Coastal Eng., 53, 10131032, doi:10.1016/j.coastaleng.2006.06.012.

    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., F. Fedele, G. Gallego, P.-C. Shih, and A. Yezzi, 2012: Offshore stereo measurements of gravity waves. Coastal Eng., 64, 127138, doi:10.1016/j.coastaleng.2012.01.007.

    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., F. Bergamasco, F. Barbariol, A. Torsello, S. Carniel, and M. Sclavo, 2014: Towards an operational stereo system for directional wave measurements from moving platforms. Proc. 33rd Int. Conf. on Ocean, Offshore and Arctic Engineering, OMAE 2014, San Francisco, CA, ASME, OMAE2014-24024, doi:10.1115/OMAE2014-24024.

  • Benoit, M., P. Frigaard, and H. A. Schäffer, 1997: Analyzing multidirectional wave spectra: A tentative classification of available methods. Proc. 27th IAHR World Conf., San Francisco, CA, IAHR, 131158.

  • Broche, P., J. C. de Maistre, and P. Forget, 1983: Mesure par radar décamétrique cohérent des courants superficiels engendrés par le vent. Oceanol. Acta, 6, 4353.

    • Search Google Scholar
    • Export Citation
  • Chase, J. L., and Coauthors, 1957: The Directional Spectrum of a Wind Generated Sea as Determined from Data Obtained by the Stereo Wave Observation Project. New York University, College of Engineering, Research Division, Department of Meteorology and Oceanography and Engineering Statistics Group, 292 pp.

    • Search Google Scholar
    • Export Citation
  • Creamer, D. B., F. Henyey, R. Schult, and J. Wright, 1989: Improved linear representation of ocean surface waves. J. Fluid Mech., 205, 135161, doi:10.1017/S0022112089001977.

    • Search Google Scholar
    • Export Citation
  • Duennebier, F. K., R. Lukas, E.-M. Nosal, J. Aucan, and R. A. Weller, 2012: Wind, waves, and acoustic background levels at station ALOHA. J. Geophys. Res., 117, C03017, doi:10.1029/2011JC007267.

  • Dugan, J. P., and Coauthors, 2001a: Airborne optical system for remote sensing of ocean waves. J. Atmos. Oceanic Technol., 18, 12671275, doi:10.1175/1520-0426(2001)018<1267:AOSFRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., C. C. Piotrowsky, and J. Z. Williams, 2001b: Water depth and surface current retrievals from airborne optical measurements of surface gravity wave dispersion. J. Geophys. Res., 106, 16 90316 915, doi:10.1029/2000JC000369.

    • Search Google Scholar
    • Export Citation
  • Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, 1997: A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res., 102, 15 78115 796, doi:10.1029/97JC00467.

    • Search Google Scholar
    • Export Citation
  • Ewans, K. C., 1998: Observations of the directional spectrum of fetch-limited waves. J. Phys. Oceanogr., 28, 495512, doi:10.1175/1520-0485(1998)028<0495:OOTDSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, W. E., and W. Munk, 2008: What do deep sea pressure fluctuations tell about short surface waves? Geophys. Res. Lett., 35, L19605, doi:10.1029/2008GL035008.

  • Farrell, W. E., and W. Munk, 2010: Booms and busts in the deep. J. Phys. Oceanogr., 40, 21592169, doi:10.1175/2010JPO4440.1.

  • Fedele, F., 2012: Space–time extremes in short-crested storm seas. J. Phys. Oceanogr., 42, 16011615, doi:10.1175/JPO-D-11-0179.1.

  • Fedele, F., A. Benetazzo, and G. F. Forristall, 2011: Space-time waves and spectra in the northern Adriatic sea via a wave acquisition stereo system. Proc. 30th Int. Conf. on Ocean, Offshore and Arctic Engineering, OMAE 2011, Rotterdam, Netherlands, ASME, OMAE2011-49924, doi:10.1115/OMAE2011-49924.

  • Fedele, F., A. Benetazzo, G. Gallego, P.-C. Shih, A. Yezzi, F. Barbariol, and F. Ardhuin, 2013: Space–time measurements of oceanic sea states. Ocean Modell., 70, 103115, doi:10.1016/j.ocemod.2013.01.001.

    • Search Google Scholar
    • Export Citation
  • Forristall, G. Z., 1981: Measurements of a saturation range in ocean wave spectra. J. Geophys. Res., 86, 80758084, doi:10.1029/JC086iC09p08075.

    • Search Google Scholar
    • Export Citation
  • Gallego, G., A. Benetazzo, A. Yezzi, and F. Fedele, 2008: Wave statistics and spectra via a variational wave acquisition stereo system. Proc. 27th Int. Conf. on Offshore Mechanics and Arctic Engineering, OMAE 2008, Estoril, Portugal, ASME, OMAE2008-57160, doi:10.1115/OMAE2008-57160.

  • Gallego, G., A. Yezzi, F. Fedele, and A. Benetazzo, 2011: A variational stereo method for the three-dimensional reconstruction of ocean waves. IEEE Trans. Geosci. Remote Sens., 49, 4445–4457, doi:10.1109/TGRS.2011.2150230.

  • Garrett, C., and J. Smith, 1976: On the interaction between long and short surface waves. J. Phys. Oceanogr., 6, 925930, doi:10.1175/1520-0485(1976)006<0925:OTIBLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartley, R., and A. Zisserman, 2003: Multiple View Geometry in Computer Vision. 2nd ed. Cambridge University Press, 655 pp.

  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity wave spectrum Part 1. General theory. J. Fluid Mech., 12, 481501, doi:10.1017/S0022112062000373.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1963: A statistical analysis of the generation of microseisms. Rev. Geophys., 1, 177210, doi:10.1029/RG001i002p00177.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project. Deut. Hydrogr. Z., 8, 195.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., 1983: Observations of the directional distribution of ocean wave energy. J. Phys. Oceanogr., 13, 191207, doi:10.1175/1520-0485(1983)013<0191:OOTDDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift, 2000: Airborne measurement of the wavenumber spectra of ocean surface waves. Part I: Spectral slope and dimensionless spectral coefficient. J. Phys. Oceanogr., 30, 27532767, doi:10.1175/1520-0485(2001)031<2753:AMOTWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2009: On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech., 637, 144, doi:10.1017/S0022112009008131.

    • Search Google Scholar
    • Export Citation
  • Kirby, J. T., and T.-M. Chen, 1989: Surface waves on vertically sheared flows: Approximate dispersion relations. J. Geophys. Res., 94, 10131027, doi:10.1029/JC094iC01p01013.

    • Search Google Scholar
    • Export Citation
  • Kosnik, M. V., and V. A. Dulov, 2011: Extraction of short wind wave spectra from stereo images of the sea surface. Meas. Sci. Technol., 22, 015504, doi:10.1088/0957-0233/22/1/015504.

  • Krasitskii, V. P., 1994: On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech., 272, 120, doi:10.1017/S0022112094004350.

    • Search Google Scholar
    • Export Citation
  • Krogstad, H. E., 2005: Conventional analysis of wave measurement arrays. Measuring and Analysing the Directional Spectra of Ocean Waves, D. Hauser et al., Eds., Office for Official Publications of the European Communities, 56–71.

  • Krogstad, H. E., and K. Trulsen, 2010: Interpretations and observations of ocean wave spectra. Ocean Dyn., 60, 973991, doi:10.1007/s10236-010-0293-3.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V., D. Akimov, J. Johannessen, and B. Chapron, 2005: On radar imaging of current features: 1. Model and comparison with observations. J. Geophys. Res., 110, C07016, doi:10.1029/2004JC002505.

  • Leckler, F., 2013: Observation et modélisation du déferlement des vagues. Ph.D. thesis, Ecole doctorale des Sciences de la Mer, Université Européenne de Bretagne, 240 pp. [Available online at http://tinyurl.com/leckler-thesis.]

  • Long, C. E., and D. T. Resio, 2007: Wind wave spectral observations in Currituck Sound, North Carolina. J. Geophys. Res., 112, C05001, doi:10.1029/2006JC003835.

  • Longuet-Higgins, M. S., 1950: A theory of the origin of microseisms. Philos. Trans. Roy. Soc. London, A243, 135, doi:10.1098/rsta.1950.0012.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., D. E. Cartwright, and N. D. Smith, 1963: Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectrum, Prentice-Hall, 111–136.

  • Lygre, A., and H. E. Krogstad, 1986: Maximum entropy estimation of the directional distribution in ocean wave spectra. J. Phys. Oceanogr., 16, 2052–2060, doi:10.1175/1520-0485(1986)016<2052:MEEOTD>2.0.CO;2.

  • Plant, W. J., and G. Farquharson, 2012: Origins of features in wave number-frequency spectra of space-time images of the ocean. J. Geophys. Res., 117, C06015, doi:10.1029/2012JC007986.

  • Quilfen, Y., B. Chapron, A. Bentamy, J. Gourrion, T. Elfouhaily, and D. Vandemark, 1999: Global ERS 1 and 2 and NSCAT observations: Upwind/crosswind and upwind/downwind measurements. J. Geophys. Res., 104, 11 45911 469, doi:10.1029/1998JC900113.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., and F. Ardhuin, 2009: Drift and mixing under the ocean surface revisited: Stratified conditions and model-data comparisons. J. Geophys. Res., 114, C02016, doi:10.1029/2007JC004466.

  • Romero, L., and K. W. Melville, 2010: Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465, doi:10.1175/2009JPO4127.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, A., 1939: Stereophotogrammetrische Wellenaufnahmen. Wissenschaftliche Ergebnisse der deutschen atlantischen Expedition auf dem Forschungs- und Vermessungsschiff “Meteor” 1925-1927 Tech. Rep., 86 pp.

  • Stewart, R. H., and J. W. Joy, 1974: HF radio measurements of surface currents. Deep-Sea Res. Oceanogr. Abstr., 21, 10391049, doi:10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. G., 1880: On the theory of oscillatory waves. Mathematical and Physical Papers, Vol. 1, 197–229, doi:10.1017/CBO9780511702242.013.

  • Sutherland, P., and W. K. Melville, 2013: Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett., 40, 30743079, doi:10.1002/grl.50584.

    • Search Google Scholar
    • Export Citation
  • Taklo, T. M. A., K. Trulsen, O. Gramstad, H. E. Krogstad, and A. Jensen, 2015: Measurement of the dispersion relation for random surface gravity waves. J. Fluid Mech., 766, 326336, doi:10.1017/jfm.2015.25.

    • Search Google Scholar
    • Export Citation
  • Tayfun, M. A., 1980: Narrow-band nonlinear sea waves. J. Geophys. Res., 85, 15481552, doi:10.1029/JC085iC03p01548.

  • Weber, B. L., and D. E. Barrick, 1977: On the nonlinear theory for gravity waves on the ocean’s surface. Part I: Derivations. J. Phys. Oceanogr., 7, 310, doi:10.1175/1520-0485(1977)007<0003:OTNTFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2010: The form of the asymptotic depth-limited wind-wave spectrum: Part III—Directional spreading. Coastal Eng., 57, 3040, doi:10.1016/j.coastaleng.2009.09.001.

    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., W. Tang, A. G. Fore, G. Neumann, A. Hayashi, A. Freedman, J. Chaubell, and G. S. E. Lagerloef, 2013: L-band passive and active microwave geophysical model functions of ocean surface winds and applications to Aquarius retrieval. IEEE Trans. Geosci. Remote Sens., 51, 46194632, doi:10.1109/TGRS.2013.2266915.

    • Search Google Scholar
    • Export Citation
  • Yurovskaya, M. V., V. A. Dulov, B. Chapron, and V. N. Kudryavtsev, 2013: Directional short wind wave spectra derived from the sea surface photography. J. Geophys. Res. Oceans, 113, C12024, doi:10.1002/jgrc.20296.

  • Zappa, C. J., M. L. Banner, H. Schultz, J. R. Gemmrich, R. P. Morison, D. A. LeBel, and T. Dickey, 2012: An overview of sea state conditions and air-sea fluxes during RaDyO. J. Geophys. Res., 117, C00H19, doi:10.1029/2011JC007336.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2749 786 66
PDF Downloads 2256 626 66