On the Nature of Near-Inertial Oscillations in the Uppermost Part of the Ocean and a Possible Route toward HF Radar Probing of Stratification

Victor I. Shrira Department of Mathematics, Environment, Physical Sciences and Applied Mathematics Research Institute, Keele University, Keele, United Kingdom

Search for other papers by Victor I. Shrira in
Current site
Google Scholar
PubMed
Close
and
Philippe Forget Université de Toulon, Aix-Marseille Université, CNRS, IRD, MIO UM 110, La Garde, France

Search for other papers by Philippe Forget in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Inertial band response of the upper ocean to changing wind is studied both theoretically and by analysis of observations in the northwestern Mediterranean. On the nontraditional f plane, because of the horizontal component of the earth’s rotation for waves of inertial band with frequencies slightly below the local inertial frequency f, there is a waveguide in the mixed layer confined from below by the pycnocline. It is argued that when the stratification is shallow these waves are most easily and strongly excited by varying winds as near-inertial oscillations (NIOs). These motions have been overlooked in previous studies because they are absent under the traditional approximation. The observations that employed buoys with thermistors, ADCPs, and two 16.3-MHz Wellen Radar (WERA) HF radars were carried out in the Gulf of Lion in April–June 2006. The observations support the theoretical picture: a pronounced inertial band response occurs only in the presence of shallow stratification and is confined to the mixed layer, and the NIO penetration below the stratified layer is weak. NIO surface magnitude and vertical localization are strongly affected by the presence of even weak density stratification in the upper 10 m. The NIO surface signatures are easily captured by HF radars. Continuous 1.8-yr HF observations near the Porquerolles Island confirm that shallow stratification is indeed the precondition for a strong NIO response. The response sensitivity to stratification provides a foundation for developing HF radar probing of stratification and, indirectly, vertical mixing, including spotting dramatic mixing events and spikes of vertical heat, mass, and momentum exchange.

Corresponding author address: Prof. Victor Shrira, Department of Mathematics, EPSAM, Keele University, Keele, Newcastle under Lyme ST5 5BG, United Kingdom. E-mail: v.i.shrira@keele.ac.uk

Abstract

Inertial band response of the upper ocean to changing wind is studied both theoretically and by analysis of observations in the northwestern Mediterranean. On the nontraditional f plane, because of the horizontal component of the earth’s rotation for waves of inertial band with frequencies slightly below the local inertial frequency f, there is a waveguide in the mixed layer confined from below by the pycnocline. It is argued that when the stratification is shallow these waves are most easily and strongly excited by varying winds as near-inertial oscillations (NIOs). These motions have been overlooked in previous studies because they are absent under the traditional approximation. The observations that employed buoys with thermistors, ADCPs, and two 16.3-MHz Wellen Radar (WERA) HF radars were carried out in the Gulf of Lion in April–June 2006. The observations support the theoretical picture: a pronounced inertial band response occurs only in the presence of shallow stratification and is confined to the mixed layer, and the NIO penetration below the stratified layer is weak. NIO surface magnitude and vertical localization are strongly affected by the presence of even weak density stratification in the upper 10 m. The NIO surface signatures are easily captured by HF radars. Continuous 1.8-yr HF observations near the Porquerolles Island confirm that shallow stratification is indeed the precondition for a strong NIO response. The response sensitivity to stratification provides a foundation for developing HF radar probing of stratification and, indirectly, vertical mixing, including spotting dramatic mixing events and spikes of vertical heat, mass, and momentum exchange.

Corresponding author address: Prof. Victor Shrira, Department of Mathematics, EPSAM, Keele University, Keele, Newcastle under Lyme ST5 5BG, United Kingdom. E-mail: v.i.shrira@keele.ac.uk
Save
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, doi:10.1175/JPO3106.1.

    • Search Google Scholar
    • Export Citation
  • Allou, A., P. Forget, and J. L. Devenon, 2010: Submesoscale vortex structures at the entrance of the Gulf of Lions in the northwestern Mediterranean Sea. Cont. Shelf Res., 30, 724732, doi:10.1016/j.csr.2010.01.006.

    • Search Google Scholar
    • Export Citation
  • Austin, J., 2013: Observations of near-inertial energy in Lake Superior. Limnol. Oceanogr., 58, 715728, doi:10.4319/lo.2013.58.2.0715.

    • Search Google Scholar
    • Export Citation
  • Bidlot, J., 2010: Use of Mercator surface currents in the ECMWF forecasting system. ECMWF Research Department Tech. Memo. R60.9/JB/10104, 10 pp.

  • Blaker, A. T., J. J. Hirschi, B. Sinha, B. de Cuevas, S. Alderson, A. Coward, and G. Madec, 2012: Large near-inertial oscillations of the Atlantic meridional overturning circulation. Ocean Modell., 42, 5056, doi:10.1016/j.ocemod.2011.11.008.

    • Search Google Scholar
    • Export Citation
  • Broche, P., J.-C. De Maistre, and P. Forget, 1983: Mesure par radar décamétrique cohérent des courants superficiels engendrés par le vent. Oceanol. Acta, 6, 4353.

    • Search Google Scholar
    • Export Citation
  • Broche, P., J.-L. Devenon, J.-C. De Maistre, and P. Forget, 1998: Experimental study of the Rhône river plume. Physics and dynamics. Oceanol. Acta, 21, 725738, doi:10.1016/S0399-1784(99)80002-4.

    • Search Google Scholar
    • Export Citation
  • Chen, C., R. O. Reid, and W. D. Nowlin Jr., 1996: Near-inertial oscillations over the Texas-Louisiana shelf. J. Geophys. Res., 101, 35093524, doi:10.1029/95JC03395.

    • Search Google Scholar
    • Export Citation
  • Cosoli, S., M. Gacic, and A. Mazzoldi, 2012: Surface current variability and wind influence in the northeastern Adriatic Sea as observed from high-frequency (HF) radar measurements. Cont. Shelf Res., 33, 113, doi:10.1016/j.csr.2011.11.008.

    • Search Google Scholar
    • Export Citation
  • Danioux, E., and P. Klein, 2008: Propagation of wind energy into the deep ocean through a fully turbulent mesoscale eddy field. J. Phys. Oceanogr., 38, 22242241, doi:10.1175/2008JPO3821.1.

    • Search Google Scholar
    • Export Citation
  • D’Ortenzio, F., S. Marullo, and R. Santoleri, 2000: Validation of AVHRR Pathfinder SST’s over the Mediterranean Sea. Geophys. Res. Lett., 27, 241244, doi:10.1029/1999GL002357.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 1998: Data Analysis in Physical Oceanography. Pergamon, 634 pp.

  • Estournel, C., P. Broche, P. Marsaleix, J.-L. Devenon, F. Auclair, and R. Vehil, 2001: The Rhone River plume in unsteady conditions: Numerical and experimental results. Estuarine Coastal Shelf Sci., 53, 2538, doi:10.1006/ecss.2000.0685.

    • Search Google Scholar
    • Export Citation
  • Estournel, C., X. Durrieu de Madron, P. Marsaleix, F. Auclair, C. Julliand, and R. Vehil, 2003: Observation and modeling of the winter coastal oceanic circulation in the Gulf of Lion under wind conditions influenced by the continental orography (FETCH experiment). J. Geophys. Res., 108, 8059, doi:10.1029/2001JC000825.

    • Search Google Scholar
    • Export Citation
  • Fernandez, D. M., J. F. Vesecky, and C. C. Teague, 1996: Measurements of upper ocean surface current shear with high-frequency radar. J. Geophys. Res., 101, 28 61528 625, doi:10.1029/96JC03108.

    • Search Google Scholar
    • Export Citation
  • Fischer, C., T. Montmerle, L. Berre, L. Auger, and S. Stefanescu, 2005: An overview of the variational assimilation in the ALADIN numerical weather-prediction system. Quart. J. Roy. Meteor. Soc., 131, 34773492, doi:10.1256/qj.05.115.

    • Search Google Scholar
    • Export Citation
  • Fu, L. L., 1981: Observations and models of inertial waves in the deep ocean. Rev. Geophys. Space Phys., 19, 141170, doi:10.1029/RG019i001p00141.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962971, doi:10.1175/1520-0485(2001)031<0962:WITNIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gatti, J., A. Petrenko, Y. Leredde, J.-L. Devenon, and C. Ulses, 2006: The Rhone river dilution zone present in the northeastern shelf of the Gulf of Lion in December 2003. Cont. Shelf Res., 26, 17941805, doi:10.1016/j.csr.2006.05.012.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., 2012: Bubble-induced turbulence suppression in Langmuir Circulation. Geophys. Res. Lett., 39, L10604, doi:10.1029/2012GL051691.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., and V. I. Shrira, 2005: Near inertial waves in the ocean: Beyond the “traditional approximation.” J. Fluid Mech., 529, 195219, doi:10.1017/S0022112005003411.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., and E. Exarchou, 2008: Internal wave properties in weakly stratified layers. J. Mar. Res., 66, 617–644, doi:10.1357/002224008787536817.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., J. T. F. Zimmerman, L. R. M. Mass, and H. Van Haren, 2008: Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys., 46, RG2004, doi:10.1029/2006RG000220.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press. 662 pp.

  • Grosdidier, S., P. Forget, Y. Barbin, and C.-A. Guérin, 2014: HF bistatic ocean Doppler spectra: Simulation versus experimentation. IEEE Trans. Geosci. Remote Sens., 52, 21382148, doi:10.1109/TGRS.2013.2258352.

    • Search Google Scholar
    • Export Citation
  • Guihou, K., J. Marmain, Y. Ourmières, A. Molcard, B. Zakardjian, and P. Forget, 2013: A case study of the mesoscale dynamics in the north-western Mediterranean Sea: A combined data–model approach. Ocean Dyn., 63, 793808, doi:10.1007/s10236-013-0619-z.

    • Search Google Scholar
    • Export Citation
  • Gurgel, K. W., G. Antonischki, H. H. Essen, and T. Schlick, 1999: Wellen Radar (WERA): A new ground-wave HF radar for ocean remote sensing. Coastal Eng., 37, 219234, doi:10.1016/S0378-3839(99)00027-7.

    • Search Google Scholar
    • Export Citation
  • Hebert, D., and J. N. Moum, 1994: Decay of a near-inertial wave. J. Phys. Oceanogr., 24, 23342351, doi:10.1175/1520-0485(1994)024<2334:DOANIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hisaki, Y., and T. Naruke, 2003: Horizontal variability of near-inertial oscillations associated with the passage of a typhoon. J. Geophys. Res., 108, 3382, doi:10.1029/2002JC001683.

    • Search Google Scholar
    • Export Citation
  • Ivonin, D. V., P. Broche, J.-L. Devenon, and V. I. Shrira, 2004: Validation of HF radar probing of the vertical shear of surface currents by acoustic Doppler current profiler measurements. J. Geophys. Res., 109, C04003, doi:10.1029/2003JC002025.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., and J. M. Gary, 2010: Studies of inertio-gravity waves on midlatitude beta-plane without the traditional approximation. Quart. J. Roy. Meteor. Soc., 136, 517536, doi:10.1002/qj.586.

    • Search Google Scholar
    • Export Citation
  • Kloosterziel, R. C., and P. Müller, 1995: Evolution of near-inertial waves. J. Fluid Mech., 301, 269294, doi:10.1017/S0022112095003892.

    • Search Google Scholar
    • Export Citation
  • Kovacevic, V., M. Gacic, I. Mancero Mosquera, A. Mazzoldi, and S. Marinetti, 2004: HF radar observations in the northern Adriatic: Surface current field in front of the Venetian Lagoon. J. Mar. Syst., 51, 95122, doi:10.1016/j.jmarsys.2004.05.026.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and A. V. Soloviev, 1990: Slippery near-surface layer of the ocean arising due to daytime solar heating. J. Phys. Oceanogr., 20, 617628, doi:10.1175/1520-0485(1990)020<0617:SNSLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G. S. E., and R. D. Muench, 1987: Near-inertial current oscillations in the vicinity of the Bering Sear marginal ice zone. J. Geophys. Res., 92, 11 789–11 802, doi:10.1029/JC092iC11p11789.

    • Search Google Scholar
    • Export Citation
  • Landau, L. D., and E. M. Lifshitz, 1977: Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, 673 pp.

  • LeBlond, P. H., and L. A. Mysak, 1978: Waves in the Ocean. Elsevier, 602 pp.

  • Liu, P. C., and G. S. Miller, 1996: Wavelet transforms and ocean current data analysis. J. Atmos. Oceanic Technol., 13, 10901099, doi:10.1175/1520-0426(1996)013<1090:WTAOCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and L. K. Shay, 2007: Current patterns on the West Florida Shelf from joint self-organizing map analyses of HF radar and ADCP data. J. Atmos. Oceanic Technol., 24, 702712, doi:10.1175/JTECH1999.1.

    • Search Google Scholar
    • Export Citation
  • Marmain, J., A. Molcard, P. Forget, and A. Barth, 2014: Assimilation of HF radar surface currents to optimize forcing in the north western Mediterranean sea. Nonlinear Processes Geophys., 21, 659675, doi:10.5194/npg-21-659-2014.

    • Search Google Scholar
    • Export Citation
  • Marullo, S., B. Nardelli, M. Guarracino, and R. Santoleri, 2007: Observing the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR sea surface temperatures (1985 to 2005): Re-analysis and validation. Ocean Sci., 3, 299310, doi:10.5194/os-3-299-2007.

    • Search Google Scholar
    • Export Citation
  • Millot, C., 1999: Circulation in the western Mediterranean Sea. J. Mar. Syst., 20, 423442, doi:10.1016/S0924-7963(98)00078-5.

  • Millot, C., and M. Crépon, 1981: Inertial oscillations on the continental shelf of the Gulf of Lions—Observations and theory. J. Phys. Oceanogr., 11, 639657, doi:10.1175/1520-0485(1981)011<0639:IOOTCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mortimer, C. H., 2006: Inertial oscillations and related internal beat pulsations and surges in Lakes Michigan and Ontario. Limnol. Oceanogr., 51, 19411955, doi:10.4319/lo.2006.51.5.1941.

    • Search Google Scholar
    • Export Citation
  • Mukherjee, A., and Coauthors, 2013: Near-inertial currents off the east coast of India. Cont. Shelf Res., 55, 2939, doi:10.1016/j.csr.2013.01.007.

    • Search Google Scholar
    • Export Citation
  • Ostrovsky, L. A., R. H. J. Grimshaw, and K. K. Khusnutdinova, 2007: The effect of depth-dependent distribution of bubbles on internal waves. J. Acoust. Soc. Amer., 121, 3033, doi:10.1121/1.4808514.

    • Search Google Scholar
    • Export Citation
  • Ourmières, Y., B. Zakardjian, K. Béranger, and C. Langlais, 2011: Assessment of a NEMO-based downscaling experiment for the North-Western Mediterranean region: Impacts on the Northern Current and comparison with ADCP data and altimetry products. Ocean Modell., 39, 386404, doi:10.1016/j.ocemod.2011.06.002.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and H. C. Graber, 1997: Introduction to high-frequency radar: Reality and myth. Oceanography, 10, 3639, doi:10.5670/oceanog.1997.18.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115136, doi:10.1146/annurev-marine-121211-172315.

    • Search Google Scholar
    • Export Citation
  • Petrenko, A., 2003: Variability of circulation features in the Gulf of Lion NW Mediterranean Sea. Importance of inertial currents. Oceanol. Acta, 26, 323338, doi:10.1016/S0399-1784(03)00038-0.

    • Search Google Scholar
    • Export Citation
  • Petrenko, A., Y. Leredde, and P. Marsaleix, 2005: Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean Sea: In situ and modeling data. Cont. Shelf Res., 25, 727, doi:10.1016/j.csr.2004.09.004.

    • Search Google Scholar
    • Export Citation
  • Petrenko, A., C. Dufau, and C. Estournel, 2008: Barotropic currents in the western Gulf of Lion, north-western Mediterranean Sea, during stratified conditions. J. Mar. Syst., 74, 406428, doi:10.1016/j.jmarsys.2008.03.004.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813821, doi:10.1016/0011-7471(70)90043-4.

    • Search Google Scholar
    • Export Citation
  • Poulain, P. M., 1990: Near-inertial and diurnal motions in the trajectories of mixed layer drifters. J. Mar. Res., 48, 793823, doi:10.1357/002224090784988728.

    • Search Google Scholar
    • Export Citation
  • Reffray, G., P. Fraunié, and P. Marsaleix, 2004: Secondary flows induced by wind forcing in the Rhône region of freshwater influence. Ocean Dyn., 54, 179196, doi:10.1007/s10236-003-0079-y.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., 2005: Mixing in seasonally stratified shelf seas: A shifting paradigm. Philos. Trans. Roy. Soc. London, A363, 28372854, doi:10.1098/rsta.2005.1662.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., M. R. Palmer, J. H. Simpson, N. R. Fisher, and J. Sharples, 2005: Thermocline mixing in summer stratified continental shelf seas. Geophys. Res. Lett., 32, L05602, doi:10.1029/2004GL022104.

    • Search Google Scholar
    • Export Citation
  • Roquet, H., J.-F. Piollé, and A. Aubret, 2011: Product User Manual for Level 4 SST products over the global ocean. MyOcean Rep. MYO-PUM-0-0-SST-TAC-L4GLO, 31 pp.

  • Rubio, A., G. Reverdin, A. Fontan, M. Gonzalez, and J. Mader, 2011: Mapping near-inertial variability in the SE Bay of Biscay from HF radar data and two offshore moored buoys. Geophys. Res. Lett., 38, L19607, doi:10.1029/2011GL048783.

    • Search Google Scholar
    • Export Citation
  • Schaeffer, A., A. Molcard, P. Forget, P. Fraunié, and P. Garreau, 2011: Generation mechanisms of mesoscale eddies in the Gulf of Lions: Radar observations and modeling. Ocean Dyn., 61, 15871609, doi:10.1007/s10236-011-0482-8.

    • Search Google Scholar
    • Export Citation
  • Schmidt, R. O., 1986: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., 34, 276280, doi:10.1109/TAP.1986.1143830.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., H. C. Graber, D. B. Ross, and R. D. Chapman, 1995: Mesoscale ocean surface current structure detected by high-frequency radar. J. Atmos. Oceanic Technol., 12, 881900, doi:10.1175/1520-0426(1995)012<0881:MOSCSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shearman, R. K., 2005: Observations of near-inertial current variability on the New England Shelf. J. Geophys. Res., 110, C02012, doi:10.1029/2004JC002341.

    • Search Google Scholar
    • Export Citation
  • Shrira, V. I., and W. A. Townsend, 2010: Inertia-gravity waves beyond the inertial latitude. Part 1. Inviscid singular focusing. J. Fluid Mech., 158, 199218.

    • Search Google Scholar
    • Export Citation
  • Shrira, V. I., D. Ivonin, P. Broche, and J.-C. de Maistre, 2001: On remote sensing of vertical shear of ocean surface currents by means of a single-frequency VHF radar. Geophys. Res. Lett., 28, 39553958, doi:10.1029/2001GL013387.

    • Search Google Scholar
    • Export Citation
  • Silverthorne, K. E., and J. M. Toole, 2009: Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr., 39, 10351049, doi:10.1175/2008JPO3920.1.

    • Search Google Scholar
    • Export Citation
  • Solabarrieta, L., A. Rubio, S. Castanedo, R. Medina, G. Charria, and C. Hernandez, 2014: Surface water circulation patterns in the southeastern Bay of Biscay: New evidences from HF radar data. Cont. Shelf Res., 74, 6076, doi:10.1016/j.csr.2013.11.022.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 1996: Observation of spatial variability of diurnal thermocline and rain-formed halocline in the Western Pacific Warm Pool. J. Phys. Oceanogr., 26, 25292538, doi:10.1175/1520-0485(1996)026<2529:OOSVOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 2006: The Near-Surface Layer of the Ocean. Springer, 552 pp.

  • Sprintall, J., and M. F. Cronin, 2001: Upper ocean vertical structure. Encyclopedia of Ocean Sciences, J. H. Steele, S. Thorpe, and K. Turekian, Eds., Academic Press, 3118–3126.

  • Staquet, C., 2004: Gravity and inertia-gravity internal waves: Breaking processes and induced mixing. Surv. Geophys., 25, 281314, doi:10.1007/s10712-003-1280-8.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., and J. W. Joy, 1974: HF radio measurements of surface currents. Deep-Sea Res. Oceanogr. Abstr., 21, 10391049, doi:10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Teague, C., 1986: Multifrequency HF radar observations of currents and current shears. IEEE J. Oceanic Eng., 11, 258269, doi:10.1109/JOE.1986.1145178.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2007: An Introduction to Ocean Turbulence. Cambridge University Press, 293 pp.

  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 442 130 7
PDF Downloads 337 83 3