Length Scale of the Finite-Amplitude Meanders of Shelfbreak Fronts

Weifeng G. Zhang Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Weifeng G. Zhang in
Current site
Google Scholar
PubMed
Close
and
Glen G. Gawarkiewicz Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Glen G. Gawarkiewicz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Through combining analytical arguments and numerical models, this study investigates the finite-amplitude meanders of shelfbreak fronts characterized by sloping isopycnals outcropping at both the surface and the shelfbreak bottom. The objective is to provide a formula for the meander length scale that can explain observed frontal length scale variability and also be verified with observations. Considering the frontal instability to be a mixture of barotropic and baroclinic instability, the derived along-shelf meander length scale formula is [b1/(1 + a1S1/2)]NH/f, where N is the buoyancy frequency; H is the depth of the front; f is the Coriolis parameter; S is the Burger number measuring the ratio of energy conversion associated with barotropic and baroclinic instability; and a1 and b1 are empirical constants. Initial growth rate of the frontal instability is formulated as [b2(1 + a1S1/2)/(1 + a2αS1/2)]NH/L, where α is the bottom slope at the foot of the front, and a2 and b2 are empirical constants. The formulas are verified using numerical sensitivity simulations, and fitting of the simulated and formulated results gives a1 = 2.69, b1 = 14.65, a2 = 5.1 × 103, and b2 = 6.2 × 10−2. The numerical simulations also show development of fast-growing frontal symmetric instability when the minimum initial potential vorticity is negative. Although frontal symmetric instability leads to faster development of barotropic and baroclinic instability at later times, it does not significantly influence the meander length scale. The derived meander length scale provides a framework for future studies of the influences of external forces on shelfbreak frontal circulation and cross-frontal exchange.

Corresponding author address: Weifeng G. Zhang, Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543. E-mail: wzhang@whoi.edu

Abstract

Through combining analytical arguments and numerical models, this study investigates the finite-amplitude meanders of shelfbreak fronts characterized by sloping isopycnals outcropping at both the surface and the shelfbreak bottom. The objective is to provide a formula for the meander length scale that can explain observed frontal length scale variability and also be verified with observations. Considering the frontal instability to be a mixture of barotropic and baroclinic instability, the derived along-shelf meander length scale formula is [b1/(1 + a1S1/2)]NH/f, where N is the buoyancy frequency; H is the depth of the front; f is the Coriolis parameter; S is the Burger number measuring the ratio of energy conversion associated with barotropic and baroclinic instability; and a1 and b1 are empirical constants. Initial growth rate of the frontal instability is formulated as [b2(1 + a1S1/2)/(1 + a2αS1/2)]NH/L, where α is the bottom slope at the foot of the front, and a2 and b2 are empirical constants. The formulas are verified using numerical sensitivity simulations, and fitting of the simulated and formulated results gives a1 = 2.69, b1 = 14.65, a2 = 5.1 × 103, and b2 = 6.2 × 10−2. The numerical simulations also show development of fast-growing frontal symmetric instability when the minimum initial potential vorticity is negative. Although frontal symmetric instability leads to faster development of barotropic and baroclinic instability at later times, it does not significantly influence the meander length scale. The derived meander length scale provides a framework for future studies of the influences of external forces on shelfbreak frontal circulation and cross-frontal exchange.

Corresponding author address: Weifeng G. Zhang, Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543. E-mail: wzhang@whoi.edu
Save
  • Allen, J. S., and P. A. Newberger, 1998: On symmetric instabilities in ocean bottom boundary layers. J. Phys. Oceanogr., 28, 11311151, doi:10.1175/1520-0485(1998)028<1131:OSIIOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, S. E., and X. Durrieu de Madron, 2009: A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci., 5, 607620, doi:10.5194/os-5-607-2009.

    • Search Google Scholar
    • Export Citation
  • Balch, W. M., D. T. Drapeau, B. C. Bowler, and T. G. Huntington, 2012: Step-changes in the physical, chemical and biological characteristics of the Gulf of Maine, as documented by the GNATS time series. Mar. Ecol. Prog. Ser., 450, 1135, doi:10.3354/meps09555.

    • Search Google Scholar
    • Export Citation
  • Barth, J. A., 1994: Short-wavelength instabilities on coastal jets and fronts. J. Geophys. Res., 99, 16 09516 115, doi:10.1029/94JC01270.

    • Search Google Scholar
    • Export Citation
  • Blumsack, S. L., and P. J. Gierasch, 1972: Mars, the effects of topography on baroclinic instability. J. Atmos. Sci., 29, 10811089, doi:10.1175/1520-0469(1972)029<1081:MTEOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Brearley, J. A., R. S. Pickart, H. Valdimarsson, S. Jonsson, R. W. Schmitt, and T. W. N. Haine, 2012: The east Greenland boundary current system south of Denmark Strait. Deep-Sea Res. I, 63, 1–19, doi:10.1016/j.dsr.2012.01.001.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2012: Baroclinic instability of an idealized tidal mixing front. J. Mar. Res., 70, 661688, doi:10.1357/002224012805262716.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and D. A. Cherian, 2013: Instability of an idealized tidal mixing front: Symmetric instabilities and frictional effects. J. Mar. Res., 71, 425450, doi:10.1357/002224013812587582.

    • Search Google Scholar
    • Export Citation
  • Cenedese, C., and P. F. Linden, 2002: Stability of a buoyancy-driven coastal current at the shelf break. J. Fluid Mech., 452, 97121, doi:10.1017/S0022112001006668.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic ocean model. J. Phys. Oceanogr., 15, 10601075, doi:10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and S. J. Lentz, 1994: Trapping of a coastal density front by the bottom boundary layer. J. Phys. Oceanogr., 24, 14641479, doi:10.1175/1520-0485(1994)024<1464:TOACDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and G. R. Flierl, 1981: Oceanic analogues of large-scale atmospheric motions. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 504–548.

  • Chen, K., G. G. Gawarkiewicz, S. J. Lentz, and J. M. Bane, 2014a: Diagnosing the warming of the northeastern U.S. coastal ocean in 2012: A linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Oceans, 119, 218227, doi:10.1002/2013JC009393.

    • Search Google Scholar
    • Export Citation
  • Chen, K., R. He, B. S. Powell, G. G. Gawarkiewicz, A. M. Moore, and H. G. Arango, 2014b: Data assimilative modeling investigation of Gulf Stream warm core ring interaction with continental shelf and slope circulation. J. Geophys. Res. Oceans, 119, 59685991, doi:10.1002/2014JC009898.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 10, 141164.

  • Fratantoni, P., and R. Pickart, 2003: Variability of the shelf break jet in the Middle Atlantic Bight: Internally or externally forced? J. Geophys. Res., 108, 3166, doi:10.1029/2002JC001326.

  • Fratantoni, P., R. Pickart, D. Torres, and A. Scotti, 2001: Mean structure and dynamics of the shelfbreak jet in the Middle Atlantic Bight during fall and winter. J. Phys. Oceanogr., 31, 21352156, doi:10.1175/1520-0485(2001)031<2135:MSADOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., K.-C. Wong, G. Gawarkiewicz, R. McCarthy, R. W. Houghton, and F. Aikman III, 1988: The morphology of shelfbreak eddies. J. Geophys. Res., 93, 15 593–15 607, doi:10.1029/JC093iC12p15593.

  • Gawarkiewicz, G. G., 1991: Linear stability models of shelfbreak fronts. J. Phys. Oceanogr., 21, 471488, doi:10.1175/1520-0485(1991)021<0471:LSMOSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G. G., F. Bahr, R. C. Beardsley, and K. H. Brink, 2001: Interaction of a slope eddy with the shelfbreak front in the Middle Atlantic Bight. J. Phys. Oceanogr., 31, 27832796, doi:10.1175/1520-0485(2001)031<2783:IOASEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G. G., K. H. Brink, F. Bahr, R. C. Beardsley, M. Caruso, J. Lynch, and C.-S. Chiu, 2004: A large-amplitude meander of the shelfbreak front in the Middle Atlantic Bight: Observations from the Shelfbreak PRIMER Experiment. J. Geophys. Res., 109, C03006, doi:10.1029/2002JC001468.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, doi:10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holliday, D., and M. E. McIntyre, 1981: On potential energy density in an incompressible, stratified fluid. J. Fluid Mech., 107, 221225, doi:10.1017/S0022112081001742.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., F. Aikman III, and H. W. Ou, 1988: Shelf-slope frontal structure and cross-shelf exchange at the New England shelfbreak. Cont. Shelf Res., 8, 687710, doi:10.1016/0278-4343(88)90072-6.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2010: On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr., 40, 25392545, doi:10.1175/2010JPO4497.1.

    • Search Google Scholar
    • Export Citation
  • Kinder, T. H., and L. K. Coachman, 1978: The front overlaying the continental slope in the eastern Bering Sea. J. Geophys. Res., 83, 45514559, doi:10.1029/JC083iC09p04551.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2008: On the calculation of the available potential energy of an isolated perturbation in a density-stratified fluid. J. Fluid Mech., 597, 415427, doi:10.1017/S0022112007009743.

    • Search Google Scholar
    • Export Citation
  • Linder, C. A., and G. G. Gawarkiewicz, 1998: A climatology of the shelfbreak front in the Middle Atlantic Bight. J. Geophys. Res., 103, 18 40518 423, doi:10.1029/98JC01438.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and M. S. Reed, 2005: The influence of topography on the stability of shelfbreak fronts. J. Phys. Oceanogr., 35, 10231036, doi:10.1175/JPO2717.1.

    • Search Google Scholar
    • Export Citation
  • Morgan, D. T., 1997: Linear instability of the shelfbreak front off the southern flank of Georges Bank. Ph.D. thesis, Dartmouth College, 190 pp.

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251269, doi:10.1016/0021-9991(76)90023-1.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pingree, R. D., 1979: Baroclinic eddies bordering the Celtic Sea in later summer. J. Mar. Biol. Assoc. U. K., 59, 689698, doi:10.1017/S0025315400045677.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2008: Computational kernel algorithms for fine-scale, multiprocess, long-term oceanic simulations. Handbook of Numerical Analysis. XIV: Computational Methods for the Atmosphere and the Ocean, P. G. Ciarlet, R. Temam, and J. Tribbia, Eds., Elsevier, 121–183.

  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, doi:10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., G. G. Gawarkiewicz, and W. B. Owens, 2013: Horizontal scales of variability over the Middle Atlantic Bight shelfbreak and continental rise from finescale observations. J. Phys. Oceanogr., 43, 222230, doi:10.1175/JPO-D-12-099.1.

    • Search Google Scholar
    • Export Citation
  • Voorhis, A. D., D. C. Webb, and R. C. Millard, 1976: Current structure and mixing in the shelf/slope water front south of New England. J. Geophys. Res., 81, 36953708, doi:10.1029/JC081i021p03695.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, doi:10.1016/j.ocemod.2003.12.003.

    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., G. G. Gawarkiewicz, D. J. McGillicuddy, and J. L. Wilkin, 2011: Climatological mean circulation at the New England shelf break. J. Phys. Oceanogr., 41, 18741893, doi:10.1175/2011JPO4604.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., D. J. McGillicuddy, and G. G. Gawarkiewicz, 2013: Is biological productivity enhanced at the New England shelfbreak front? J. Geophys. Res., 118, 517535, doi:10.1002/jgrc.20068.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 254 117 17
PDF Downloads 137 58 13