Wind Stress Dynamics in Chesapeake Bay: Spatiotemporal Variability and Wave Dependence in a Fetch-Limited Environment

Alexander W. Fisher University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, Maryland

Search for other papers by Alexander W. Fisher in
Current site
Google Scholar
PubMed
Close
,
Lawrence P. Sanford University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, Maryland

Search for other papers by Lawrence P. Sanford in
Current site
Google Scholar
PubMed
Close
, and
Steven E. Suttles University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, Maryland

Search for other papers by Steven E. Suttles in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatiotemporal variability of wind stress dynamics in Chesapeake Bay has been investigated using a combination of observations and numerical modeling. Direct measurements of momentum and surface heat fluxes were collected using an ultrasonic anemometer deployed on a fixed tower in the middle reaches of Chesapeake Bay in the spring of 2012 along with collocated wave measurements. These measurements were compared to bulk estimates of wind stress using wave-dependent formulations of the Charnock parameter (alpha). Results indicate that a constant alpha value of 0.018 reasonably represents observed stress values, but estimates can be improved by the inclusion of surface wave information in the parameterization of alpha. Using a wave age formulation of alpha in combination with an optimally interpolated 10-m neutral wind field, a third-generation numerical wave model, Simulating Waves Nearshore (SWAN), was employed to investigate the spatiotemporal variability of wind stress across the estuary. Alpha values were found to be wind speed dependent and displayed spatial distributions that ranged between open-ocean values and strongly fetch-limited values. Model results suggest that variable wind stress dynamics stemming from a combination of variable surface winds and fetch-limited wave growth may result in the 10-m neutral drag coefficient varying by a factor of 2 across the estuary. Up to 20% of these changes can be directly attributed to the effects of variable waves.

University of Maryland Center for Environmental Science Contribution Number 5063.

Corresponding author address: Alexander W. Fisher, University of Maryland Center for Environmental Science, Horn Point Laboratory, 2020 Horns Point Road, P.O. Box 775, Cambridge, MD 21613. E-mail: awfisher@umces.edu

Abstract

The spatiotemporal variability of wind stress dynamics in Chesapeake Bay has been investigated using a combination of observations and numerical modeling. Direct measurements of momentum and surface heat fluxes were collected using an ultrasonic anemometer deployed on a fixed tower in the middle reaches of Chesapeake Bay in the spring of 2012 along with collocated wave measurements. These measurements were compared to bulk estimates of wind stress using wave-dependent formulations of the Charnock parameter (alpha). Results indicate that a constant alpha value of 0.018 reasonably represents observed stress values, but estimates can be improved by the inclusion of surface wave information in the parameterization of alpha. Using a wave age formulation of alpha in combination with an optimally interpolated 10-m neutral wind field, a third-generation numerical wave model, Simulating Waves Nearshore (SWAN), was employed to investigate the spatiotemporal variability of wind stress across the estuary. Alpha values were found to be wind speed dependent and displayed spatial distributions that ranged between open-ocean values and strongly fetch-limited values. Model results suggest that variable wind stress dynamics stemming from a combination of variable surface winds and fetch-limited wave growth may result in the 10-m neutral drag coefficient varying by a factor of 2 across the estuary. Up to 20% of these changes can be directly attributed to the effects of variable waves.

University of Maryland Center for Environmental Science Contribution Number 5063.

Corresponding author address: Alexander W. Fisher, University of Maryland Center for Environmental Science, Horn Point Laboratory, 2020 Horns Point Road, P.O. Box 775, Cambridge, MD 21613. E-mail: awfisher@umces.edu
Save
  • Andreas, E. L, 2009: Relating the drag coefficient and the roughness length over the sea to the wavelength of the peak waves. J. Phys. Oceanogr., 39, 30113020, doi:10.1175/2009JPO4189.1.

    • Search Google Scholar
    • Export Citation
  • Ataktürk, S., and B. Katsaros, 1999: Wind stress and surface waves observed on Lake Washington. J. Phys. Oceanogr., 29, 633650, doi:10.1175/1520-0485(1999)029<0633:WSASWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banner, M., W. Chen, E. J. Walsh, J. Jensen, S. Lee, and C. B. Fandry, 1999: The Southern Ocean Waves Experiment. Part I: Overview and mean results. J. Phys. Oceanogr., 29, 21302145, doi:10.1175/1520-0485(1999)029<2130:TSOWEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boon, J. D., 1998: Wave climate and wave monitoring in lower Chesapeake Bay. Proc. Third Int. Conf. on Ocean Wave Measurement and Analysis, Virginia Beach, VA, ASCE, 10761087.

  • Cassiani, M., G. G. Katul, and J. D. Albertson, 2008: The effects of canopy leaf area index on airflow across forest edges: Large‐eddy simulation and analytical results. Bound.-Layer Meteor., 126, 433460, doi:10.1007/s10546-007-9242-1.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Chen, S. N., and L. P. Sanford, 2009: Axial wind effects on stratification and longitudinal salt transport in an idealized, partially mixed estuary. J. Phys. Oceanogr., 39, 19051920, doi:10.1175/2009JPO4016.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. N., L. P. Sanford, and D. K. Ralston, 2009: Lateral circulation and sediment transport driven by axial winds in an idealized partially, mixed estuary. J. Geophys. Res., 114, C12006, doi:10.1029/2008JC005014.

    • Search Google Scholar
    • Export Citation
  • Chiles, J. P., and P. Delfiner, 1999: Geostatistics: Modeling Spatial Uncertainty. John Wiley, 695 pp.

  • Deutsch, C., 1996: Correcting for negative weights in ordinary kriging. Comput. Geosci., 22, 765773, doi:10.1016/0098-3004(96)00005-2.

    • Search Google Scholar
    • Export Citation
  • Dobson, F. W., S. D. Smith, and R. J. Anderson, 1994: Measuring the relationship between wind stress and sea state in the open ocean in the presence of swell. Atmos.–Ocean, 32, 237256, doi:10.1080/07055900.1994.9649497.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1990: Air–sea interaction. Ocean Engineering Science, B. LeMehaute and D. M. Hanes, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 9, John Wiley and Sons, 239–292.

  • Drennan, W. M., K. K. Kahma, and M. A. Donelan, 1999: On momentum flux and velocity spectra over waves. Bound.-Layer Meteor., 92, 489515, doi:10.1023/A:1002054820455.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, doi:10.1029/2000JC000715.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Erickson, D. J., 1993: A stability dependent theory for air–sea exchange. J. Geophys. Res., 98, 84718488, doi:10.1029/93JC00039.

  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for TOGA COARE. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fleagle, R. G., and J. A. Businger, 1980: An Introduction to Atmospheric Physics. Academic Press, 432 pp.

  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929, doi:10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Geernaert, G. L., 1990: Bulk parameterization for the wind stress and heat fluxes. Surface Waves and Fluxes, G. L. Geernaert and W. J. Plant, Eds., Kluwer Academy, 91–172.

  • Geernaert, G. L., K. B. Katsaros, and K. Richter, 1986: Variations of the drag coefficient and its dependence on sea state. J. Geophys. Res., 91, 76677679, doi:10.1029/JC091iC06p07667.

    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., S. Larsen, and F. Hansen, 1987: Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res., 92, 13 12713 139, doi:10.1029/JC092iC12p13127.

    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., 1997: Influence of wind on dynamics and flushing of shallow estuaries. Estuarine Coastal Shelf Sci., 44, 713722, doi:10.1006/ecss.1996.0140.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurement of wind–wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut Rep., 95 pp.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2010: Comments on relating the drag coefficient and the roughness length over the sea to the wavelength of the peak waves. J. Phys. Oceanogr., 40, 25562562, doi:10.1175/2010JPO4409.1.

    • Search Google Scholar
    • Export Citation
  • Isaaks, E. H., and R. M. Srivastava, 1989: An Introduction to Applied Geostatistics. Oxford University Press, 561 pp.

  • Janssen, P. A. E. M., 1989: Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr., 19, 745754, doi:10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, D., 2002: DIWASP, directional wave spectra toolbox for MATLAB: User manual. Centre for Water Research, University of Western Australia Research Rep. WP 1601 DJ (V1.1), 18 pp.

  • Johnson, H. K., and H. J. Vested, 1992: Effects of water waves on wind shear stress for current modeling. J. Atmos. Oceanic Technol., 9, 850861, doi:10.1175/1520-0426(1992)009<0850:EOWWOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. K., J. Højstrup, H. J. Vested, and S. E. Larsen, 1998: On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28, 17021716, doi:10.1175/1520-0485(1998)028<1702:OTDOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. A. Businger, 1963: A continuous wave sonic anemometer-thermometer. J. Appl. Meteor., 2, 156164, doi:10.1175/1520-0450(1963)002<0156:ACWSAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

  • Kitaigorodskii, S. A., 1973: The Physics of Air–Sea Interaction. Cambridge University Press, 273 pp.

  • Komen, G. J., K. Hasselmann, and K. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285, doi:10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

  • Komen, G. J., P. A. E. M. Janssen, V. Makin, and W. Oost, 1998: On the sea state dependence of the Charnock parameter. Global Atmos. Ocean Syst., 5, 367388.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. A. Businger, 1994: Atmosphere–Ocean Interaction. Oxford University Press, 362 pp.

  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, M., L. Zhong, and W. C. Boicourt, 2005: Simulations of Chesapeake Bay estuary: Sensitivity to turbulence mixing parameterizations and comparison with observations. J. Geophys. Res., 110, C12004, doi:10.1029/2004JC002585.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and M. Li, 2011: Effects of winds on stratification and circulation in a partially mixed estuary. J. Geophys. Res., 116, C12012, doi:10.1029/2010JC006893.

    • Search Google Scholar
    • Export Citation
  • Lin, W., 2000: Modeling surface wind waves and their effects on air–sea fluxes in Chesapeake Bay. Ph.D. dissertation, University of Maryland Center for Environmental Science, 226 pp.

  • Lin, W., L. P. Sanford, B. J. Alleva, and D. J. Schwab, 1998: Surface wind wave modeling in Chesapeake Bay. Proc. Third Int. Conf. on Ocean Wave Measurement and Analysis, Virginia Beach, VA, ASCE, 1048–1062.

  • Lin, W., L. P. Sanford, and S. E. Suttles, 2002a: Wave measurement and modeling in Chesapeake Bay. Cont. Shelf Res., 22, 26732686, doi:10.1016/S0278-4343(02)00120-6.

    • Search Google Scholar
    • Export Citation
  • Lin, W., L. P. Sanford, S. E. Suttles, and R. Valigura, 2002b: Drag coefficients with fetch-limited wind waves. J. Phys. Oceanogr., 32, 30583074, doi:10.1175/1520-0485(2002)032<3058:DCWFLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, doi:10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Howell, J. Højstrup, J. M. Wilczak, J. B. Edson, and J. E. Hare, 1996: Sea surface drag coefficients in RASEX. J. Geophys. Res., 101, 14 32714 335, doi:10.1029/96JC00748.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., and C. Mastenbroek, 1996: Impact of waves on air-sea exchange of sensible heat and momentum. Bound.-Layer Meteor., 79, 279300, doi:10.1007/BF00119442.

    • Search Google Scholar
    • Export Citation
  • Markfort, C. D., A. L. S. Perez, J. W. Thill, D. A. Jaster, F. Porté-Agel, and H. G. Stefan, 2010: Wind sheltering of a lake by a tree canopy or bluff topography. Water Resour. Res., 46, W03530, doi:10.1029/2009WR007759.

    • Search Google Scholar
    • Export Citation
  • Martin, M. J., 1998: An investigation of momentum exchange parameterizations and atmospheric forcing for the coastal mixing and optics program. M.S. thesis, Dept. of Applied Ocean Physics and Engineering, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 83 pp.

  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geofiz. Inst., 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Mortensen, N. G., 1994: Flow-response characteristic of the Kaijo Denki omni-direction sonic anemometer (TR-61V), Riso-R-704 (EN). Riso National Laboratory Rep., 32 pp.

  • Obukhov, A. M., 1971: Turbulence in an atmosphere with a nonuniform temperature. Bound.-Layer Meteor., 2, 729, doi:10.1007/BF00718085.

    • Search Google Scholar
    • Export Citation
  • Olea, R., and V. Pawlowsky, 1996: Compensating for estimation smoothing in kriging. Math. Geol., 28, 407417, doi:10.1007/BF02083653.

  • Oost, W. A., G. J. Komen, C. M. J. Jacobs, and C. van Oort, 2002: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409438, doi:10.1023/A:1014913624535.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley Intersciences, 397 pp.

  • Perrie, W., and B. Toulany, 1990: Fetch relations for wind-generated waves as a function of wind-stress scaling. J. Phys. Oceanogr., 20, 16661681, doi:10.1175/1520-0485(1990)020<1666:FRFWGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 336 pp.

  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, doi:10.1017/S0022112085002221.

    • Search Google Scholar
    • Export Citation
  • Sanford, L. P., 1994: Wave forced resuspension of upper Chesapeake muds. Estuaries, 17, 148165, doi:10.2307/1352564.

  • Schotanus, P., F. T. M. Nieuwstadt, and H. A. R. de Bruin, 1983: Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteor., 26, 8193, doi:10.1007/BF00164332.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., 2010a: Wind modulation of dissolved oxygen in Chesapeake Bay. Estuaries Coasts, 33, 11641175, doi:10.1007/s12237-010-9319-9.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., 2010b: The importance of climate variability to wind-driven modulation of hypoxia in Chesapeake Bay. J. Phys. Oceanogr., 40, 14351440, doi:10.1175/2010JPO4321.1.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., 2013: Physical controls on hypoxia in Chesapeake Bay: A numerical modeling study. J. Geophys. Res. Oceans, 118, 12391256, doi:10.1002/jgrc.20138.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., C. T. Friedrichs, and J. Brubaker, 2005: Control of the estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries Coasts, 28, 321326, doi:10.1007/BF02693915.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709726, doi:10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, doi:10.1029/JC093iC12p15467.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60, 109142, doi:10.1007/BF00122064.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., E. A. D’ Asaro, M. F. Cronin, W. E. Rogers, R. R. Harcourt, and A. Shcherbina, 2013: Waves and the equilibrium range at Ocean Weather Station P. J. Geophys. Res. Oceans, 118, 59515962, doi:10.1002/2013JC008837.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Fetch limited drag coefficients. Bound.-Layer Meteor., 85, 5379, doi:10.1023/A:1000472623187.

  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 350 pp.

  • Wilczak, J., S. Oncley, and S. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, doi:10.1023/A:1018966204465.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1980: Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr., 10, 727740, doi:10.1175/1520-0485(1980)010<0727:WSCOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zijlema, M., G. Ph. van Vledder, and L. H. Holthuijsen, 2012: Bottom friction and wind drag for spectral wave models. Coastal Eng., 65, 1926, doi:10.1016/j.coastaleng.2012.03.002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 405 175 6
PDF Downloads 265 72 3