Effects of the Asymmetry between Surface and Interior Flow on the Dynamics of a Thermohaline Loop

Friederike Pollmann Institut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by Friederike Pollmann in
Current site
Google Scholar
PubMed
Close
,
Fabien Roquet Department of Meteorology (MISU), Stockholm University, Stockholm, Sweden

Search for other papers by Fabien Roquet in
Current site
Google Scholar
PubMed
Close
, and
Gurvan Madec LOCEAN Sorbonne Universités (UPMC, University of Paris 6)/CNRS/IRD/MNHN, Paris, France

Search for other papers by Gurvan Madec in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-scale overturning cells in the ocean typically combine an essentially horizontal surface branch and an interior branch below, where the circulation spans both horizontal and vertical scales. The aim of this study is to analyze the impact of this asymmetry between the two branches by “folding” a one-dimensional thermohaline loop, such that its lower part remains vertical while its upper part is folded down into the horizontal plane. It is found that both the transitory response and the distribution of thermohaline properties are modified significantly when the loop is folded. In some cases, velocity oscillations are induced during the spinup that were not seen in the unfolded case. This is because a circular loop allows for compensations between the density torques produced above and below the heat forcing level, while such compensations are not possible in the folded loop because of the horizontal direction of the surface circulation. Furthermore, the dynamical effects associated with nonlinearities of the equation of state are significantly altered by the folding. Cabbeling tends to decelerate the flow in the folded loop, instead of accelerating it as in the circular case, and can also act to dampen velocity oscillations. Thermobaricity also alters the loop circulation, although comparatively less.

Denotes Open Access content.

Corresponding author address: Friederike Pollmann, Institut für Meereskunde, Universität Hamburg, Bundesstr. 53, 20146 Hamburg, Germany. E-mail: friederike.pollmann@uni-hamburg.de

Abstract

Large-scale overturning cells in the ocean typically combine an essentially horizontal surface branch and an interior branch below, where the circulation spans both horizontal and vertical scales. The aim of this study is to analyze the impact of this asymmetry between the two branches by “folding” a one-dimensional thermohaline loop, such that its lower part remains vertical while its upper part is folded down into the horizontal plane. It is found that both the transitory response and the distribution of thermohaline properties are modified significantly when the loop is folded. In some cases, velocity oscillations are induced during the spinup that were not seen in the unfolded case. This is because a circular loop allows for compensations between the density torques produced above and below the heat forcing level, while such compensations are not possible in the folded loop because of the horizontal direction of the surface circulation. Furthermore, the dynamical effects associated with nonlinearities of the equation of state are significantly altered by the folding. Cabbeling tends to decelerate the flow in the folded loop, instead of accelerating it as in the circular case, and can also act to dampen velocity oscillations. Thermobaricity also alters the loop circulation, although comparatively less.

Denotes Open Access content.

Corresponding author address: Friederike Pollmann, Institut für Meereskunde, Universität Hamburg, Bundesstr. 53, 20146 Hamburg, Germany. E-mail: friederike.pollmann@uni-hamburg.de
Save
  • Arzel, O., T. Huck, and A. Colin de Verdière, 2006: The different nature of the interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J. Phys. Oceanogr., 36, 17031718, doi:10.1175/JPO2938.1.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., 2005: Timescales and dynamics of the formation of a thermocline. Dyn. Atmos. Oceans, 39, 2140, doi:10.1016/j.dynatmoce.2004.10.010.

    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301304, doi:10.1038/323301a0.

    • Search Google Scholar
    • Export Citation
  • Dewar, W., and R. Huang, 1996: On the forced flow of salty water in a loop. Phys. Fluids, 8, 954970, doi:10.1063/1.868874.

  • Hazewinkel, J., F. Paparella, and W. Young, 2012: Stressed horizontal convection. J. Fluid Mech., 692, 317331, doi:10.1017/jfm.2011.514.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, doi:10.1175/BAMS-86-11-1609.

    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Nycander, 2013: The buoyancy budget with a nonlinear equation of state. J. Phys. Oceanogr., 43, 176186, doi:10.1175/JPO-D-12-063.1.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727746, doi:10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hughes, G. O., and R. W. Griffiths, 2008: Horizontal convection. Annu. Rev. Fluid Mech., 40, 185208, doi:10.1146/annurev.fluid.40.111406.102148.

    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Klinger, B. A., J. Marshall, and U. Send, 1996: Representation of convective plumes by vertical adjustment. J. Geophys. Res., 101, 18 17518 182, doi:10.1029/96JC00861.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., and T. J. McDougall, 2010: Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J. Phys. Oceanogr., 40, 16901709, doi:10.1175/2010JPO4303.1.

    • Search Google Scholar
    • Export Citation
  • Malkus, W. V., 1972: Non-periodic convection at high and low Prandtl number. Mem. Soc. Roy. Sci. Liege, 4, 125128.

  • Manabe, B. S., and R. J. Stouffer, 1999: Are two modes of thermohaline circulation stable? Tellus, 51A, 400411, doi:10.1034/j.1600-0870.1999.t01-3-00005.x.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., 2000: Abrupt climate change and thermohaline circulation: Mechanisms and predictability. Proc. Natl. Acad. Sci. USA, 97, 13471350, doi:10.1073/pnas.97.4.1347.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 164, doi:10.1029/98RG02739.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Thermobaricity, cabbeling, and water-mass conversion. J. Geophys. Res., 92, 54485464, doi:10.1029/JC092iC05p05448.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, doi:10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and C. J. Garrett, 1992: Scalar conservation equations in a turbulent ocean. Deep-Sea Res., 39A, 19531966, doi:10.1016/0198-0149(92)90007-G.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., D. R. Jackett, and F. J. Millero, 2009: An algorithm for estimating Absolute Salinity in the global ocean. Ocean Sci. Discuss., 6, 215242, doi:10.5194/osd-6-215-2009.

    • Search Google Scholar
    • Export Citation
  • Miljkovic, N., and E. N. Wang, 2011: Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons. Sol. Energy, 85, 28432855, doi:10.1016/j.solener.2011.08.021.

    • Search Google Scholar
    • Export Citation
  • Müller, P., and A. Natarov, 2003: The internal wave action model (IWAM). Near-Boundary Processes and Their Parameterization: Proc. 13th ‘Aha Huliko‘a Winter Workshop, Honolulu, HI, University of Hawai’i at Mānoa, 95–105.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., and C. Eden, 2013: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr., 43, 17591779, doi:10.1175/JPO-D-12-0207.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., J. Toole, J. Ledwell, and R. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Roquet, F., 2013: Dynamical potential energy: A new approach to ocean energetics. J. Phys. Oceanogr., 43, 457476, doi:10.1175/JPO-D-12-098.1.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., and L. Zhang, 1996: Qualitative behavior and nonoscillation of Stommel’s thermohaline box model. J. Climate, 9, 27682777, doi:10.1175/1520-0442(1996)009<2768:QBANOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schanze, J. J., and R. W. Schmitt, 2013: Estimates of cabbeling in the global ocean. J. Phys. Oceanogr., 43, 698705, doi:10.1175/JPO-D-12-0119.1.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., J. P. Mccreary, and G. C. Johnson, 2004: Shallow overturning circulations of the tropical-subtropical oceans. Earth’s Climate, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 261–304.

  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13A, 224230, doi:10.1111/j.2153-3490.1961.tb00079.x.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33, 530560, doi:10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J., and R. Key, 2003: Thermohaline circulation. Encyclopedia of Atmospheric Sciences, A. C. Judith and J. A. Pyle, Eds., Elsevier, 1549–1555.

  • Toole, J. M., R. W. Schmitt, and K. L. Polzin, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 11201123, doi:10.1126/science.264.5162.1120.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2007: Oceanography: Power of pull. Nature, 447, 383383, doi:10.1038/447383a.

  • Welander, P., 1967: On the oscillatory instability of a differentially heated fluid loop. J. Fluid Mech., 29, 1730, doi:10.1017/S0022112067000606.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1986: Thermohaline effects in the ocean circulation and related simple models. Large-Scale Transport Processes in Oceans and Atmosphere, J. Willebrand and D. L. T. Anderson, Eds., Springer, 163–200.

  • Whalen, C., L. Talley, and J. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2005: Thermohaline loops, Stommel box models, and the Sandström theorem. Tellus, 57A, 8499, doi:10.1111/j.1600-0870.2005.00093.x.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2010: Dynamic enthalpy, Conservative Temperature, and the seawater Boussinesq approximation. J. Phys. Oceanogr., 40, 394400, doi:10.1175/2009JPO4294.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, S., and C. Wunsch, 2005: Stress-driven thermohaline loops. Phys. Fluids, 17, 066601, doi:10.1063/1.1927887.

  • Zvirin, Y., 1982: A review of natural circulation loops in pressurized water reactors and other systems. Nucl. Eng. Des., 67, 203225, doi:10.1016/0029-5493(82)90142-X.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 111 42 2
PDF Downloads 65 24 0