Influence of Enhanced Abyssal Diapycnal Mixing on Stratification and the Ocean Overturning Circulation

A. Mashayek Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by A. Mashayek in
Current site
Google Scholar
PubMed
Close
,
R. Ferrari Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by R. Ferrari in
Current site
Google Scholar
PubMed
Close
,
M. Nikurashin Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, and ARC Centre of Excellence for Climate System Science, Sydney, New South Wales, Australia

Search for other papers by M. Nikurashin in
Current site
Google Scholar
PubMed
Close
, and
W. R. Peltier University of Toronto, Toronto, Ontario, Canada

Search for other papers by W. R. Peltier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The meridional overturning circulation (MOC) is composed of interconnected overturning cells that transport cold dense abyssal waters formed at high latitudes back to the surface. Turbulent diapycnal mixing plays a primary role in setting the rate and patterns of the various overturning cells that constitute the MOC. The focus of the analyses in this paper will be on the influence of sharp vertical variations in mixing on the MOC and ocean stratification. Mixing is enhanced close to the ocean bottom topography where internal waves generated by the interaction of tides and geostrophic motions with topography break. It is shown that the sharp vertical variations in mixing lead to the formation of three layers with different dynamical balances governing meridional flow. Specifically, an abyssal bottom boundary layer forms above the ocean floor where mixing is largest and hosts the northward transport of the heaviest waters from the southern channel to the closed basins. A deep layer forms above the bottom layer in which the upwelled waters return south. A third adiabatic layer lies above the other two. While the adiabatic layer has been studied in detail in recent years, the deep and bottom layers are less appreciated. It is shown that the bottom layer, which is not resolved or allowed for in most idealized models, must be present to satisfy the no flux boundary condition at the ocean floor and that its thickness is set by the vertical profile of mixing. The deep layer spans a considerable depth range of the ocean within which the stratification scale is set by mixing, in line with the classic view of Munk in 1966.

Corresponding author address: Ali Mashayek, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. E-mail: ali_mash@mit.edu

Abstract

The meridional overturning circulation (MOC) is composed of interconnected overturning cells that transport cold dense abyssal waters formed at high latitudes back to the surface. Turbulent diapycnal mixing plays a primary role in setting the rate and patterns of the various overturning cells that constitute the MOC. The focus of the analyses in this paper will be on the influence of sharp vertical variations in mixing on the MOC and ocean stratification. Mixing is enhanced close to the ocean bottom topography where internal waves generated by the interaction of tides and geostrophic motions with topography break. It is shown that the sharp vertical variations in mixing lead to the formation of three layers with different dynamical balances governing meridional flow. Specifically, an abyssal bottom boundary layer forms above the ocean floor where mixing is largest and hosts the northward transport of the heaviest waters from the southern channel to the closed basins. A deep layer forms above the bottom layer in which the upwelled waters return south. A third adiabatic layer lies above the other two. While the adiabatic layer has been studied in detail in recent years, the deep and bottom layers are less appreciated. It is shown that the bottom layer, which is not resolved or allowed for in most idealized models, must be present to satisfy the no flux boundary condition at the ocean floor and that its thickness is set by the vertical profile of mixing. The deep layer spans a considerable depth range of the ocean within which the stratification scale is set by mixing, in line with the classic view of Munk in 1966.

Corresponding author address: Ali Mashayek, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. E-mail: ali_mash@mit.edu
Save
  • Andrews, D., and M. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Decloedt, T., and D. S. Luther, 2010: On a simple empirical parameterization of topography-catalyzed diapycnal mixing in the abyssal ocean. J. Phys. Oceanogr., 40, 487508, doi:10.1175/2009JPO4275.1.

    • Search Google Scholar
    • Export Citation
  • Decloedt, T., and D. S. Luther, 2012: Spatially heterogeneous diapycnal mixing in the abyssal ocean: A comparison of two parameterizations to observations. J. Geophys. Res., 117, C11025, doi:10.1029/2012JC008304.

  • Ganachaud, A., 2003: Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J. Geophys. Res., 108, 3213, doi:10.1029/2002JC001565.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and K. Koltermann, 2004: WOCE global hydrographic climatology. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 35, 52 pp.

    • Search Google Scholar
    • Export Citation
  • Ito, T., and J. Marshall, 2008: Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38, 28322845, doi:10.1175/2008JPO3878.1.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Lund, D. C., J. F. Adkins, and R. Ferrari, 2011: Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing. Paleoceanography, 26, PA1213, doi:10.1029/2010PA001938.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2006: A model of the upper branch of the meridional overturning of the Southern Ocean. Prog. Oceanogr., 70, 331345, doi:10.1016/j.pocean.2006.07.004.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 5753–5766, doi:10.1029/96JC02775.

  • Mashayek, A., R. Ferrari, G. Vettoretti, and W. Peltier, 2013: The role of the geothermal heat flux in driving the abyssal ocean circulation. Geophys. Res. Lett., 40, 3144–3149, doi:10.1002/grl.50640.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602–615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., A. M. Hogg, and M. L. Ward, 2011: Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing. Geophys. Res. Lett., 38, L14602, doi:10.1029/2011GL048031.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507–532, doi:10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010a: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, doi:10.1175/2010JPO4315.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010b: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, doi:10.1175/2009JPO4199.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, doi:10.1175/2010JPO4529.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, doi:10.1002/grl.50542.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time-mean flow. J. Atmos. Sci., 43, 16571678, doi:10.1175/1520-0469(1986)043<1657:TDPOTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal mean flow. J. Phys. Oceanogr., 35, 165–174, doi:10.1175/JPO-2669.1.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., X. Zhai, W. J. Merryfield, and W. G. Lee, 2012: The combined effect of tidally and eddy-driven diapycnal mixing on the large-scale ocean circulation. J. Phys. Oceanogr., 42, 526538, doi:10.1175/JPO-D-11-0122.1.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. B. Arons, 1960: On the abyssal circulation of the World Ocean—II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6, 217233, doi:10.1016/0146-6313(59)90075-9.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Viebahn, J., and C. Eden, 2010: Towards the impact of eddies on the response of the Southern Ocean to climate change. Ocean Modell., 34, 150165, doi:10.1016/j.ocemod.2010.05.005.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 1854–1872, doi:10.1175/JPO-D-13-0104.1.

  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, doi:10.1175/2010JPO4393.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, doi:10.1175/2011JPO4570.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 471 150 10
PDF Downloads 395 112 4