Defining a Simplified Yet “Realistic” Equation of State for Seawater

Fabien Roquet Department of Meteorology (MISU), Stockholm University, Stockholm, Sweden

Search for other papers by Fabien Roquet in
Current site
Google Scholar
PubMed
Close
,
Gurvan Madec LOCEAN Sorbonne Universités (UPMC, University of Paris 6)/CNRS/IRD/MNHN, Paris, France

Search for other papers by Gurvan Madec in
Current site
Google Scholar
PubMed
Close
,
Laurent Brodeau Department of Meteorology (MISU), Stockholm University, Stockholm, Sweden

Search for other papers by Laurent Brodeau in
Current site
Google Scholar
PubMed
Close
, and
J. Nycander Department of Meteorology (MISU), Stockholm University, Stockholm, Sweden

Search for other papers by J. Nycander in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is a growing realization that the nonlinear nature of the equation of state has a deep impact on the global ocean circulation; however, the understanding of the global effects of these nonlinearities remains elusive. This is partly because of the complicated formulation of the seawater equation of state making it difficult to handle in theoretical studies. In this paper, a hierarchy of polynomial equations of state of increasing complexity, optimal in a least squares sense, is presented. These different simplified equations of state are then used to simulate the ocean circulation in a global 2°-resolution configuration. Comparisons between simulated ocean circulations confirm that nonlinear effects are of major importance, in particular influencing the circulation through determination of the static stability below the mixed layer, thus controlling rates of exchange between the atmosphere and the ocean interior. It is found that a simple polynomial equation of state, with a quadratic term in temperature (for cabbeling), a temperature–pressure product term (for thermobaricity), and a linear term in salinity, that is, only four tuning parameters, is enough to simulate a reasonably realistic global circulation. The best simulation is obtained when the simplified equation of state is forced to have an accurate thermal expansion coefficient near the freezing point, highlighting the importance of polar regions for the global stratification. It is argued that this simplified equation of state will be of great value for theoretical studies and pedagogical purposes.

Denotes Open Access content.

Corresponding author address: Fabien Roquet, Department of Meteorology (MISU), Stockholm University, S-106 91 Stockholm, Sweden. E-mail: fabien.roquet@gmail.com

Abstract

There is a growing realization that the nonlinear nature of the equation of state has a deep impact on the global ocean circulation; however, the understanding of the global effects of these nonlinearities remains elusive. This is partly because of the complicated formulation of the seawater equation of state making it difficult to handle in theoretical studies. In this paper, a hierarchy of polynomial equations of state of increasing complexity, optimal in a least squares sense, is presented. These different simplified equations of state are then used to simulate the ocean circulation in a global 2°-resolution configuration. Comparisons between simulated ocean circulations confirm that nonlinear effects are of major importance, in particular influencing the circulation through determination of the static stability below the mixed layer, thus controlling rates of exchange between the atmosphere and the ocean interior. It is found that a simple polynomial equation of state, with a quadratic term in temperature (for cabbeling), a temperature–pressure product term (for thermobaricity), and a linear term in salinity, that is, only four tuning parameters, is enough to simulate a reasonably realistic global circulation. The best simulation is obtained when the simplified equation of state is forced to have an accurate thermal expansion coefficient near the freezing point, highlighting the importance of polar regions for the global stratification. It is argued that this simplified equation of state will be of great value for theoretical studies and pedagogical purposes.

Denotes Open Access content.

Corresponding author address: Fabien Roquet, Department of Meteorology (MISU), Stockholm University, S-106 91 Stockholm, Sweden. E-mail: fabien.roquet@gmail.com
Save
  • Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278, doi:10.1175/JPO-D-11-023.1.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., R. Hallberg, and M. Harrison, 2008: A finite volume discretization of the pressure gradient force using analytic integration. Ocean Modell., 22, 106113, doi:10.1016/j.ocemod.2008.02.001.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388, doi:10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. M. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646, doi:10.1029/97JC00480.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models.Princeton University Press, 518 pp.

  • Griffies, S. M., and A. J. Adcroft, 2008: Formulating the equations of ocean models. Ocean Modeling in an Eddying Regime,Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 281–317.

  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-Ice Reference Experiments (CORES). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, doi:10.1175/BAMS-86-11-1609.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., H. A. Dijkstra, and J. A. Saenz, 2013: The energetics of a collapsing meridional overturning circulation. J. Phys. Oceanogr., 43, 15121524, doi:10.1175/JPO-D-12-0212.1.

    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Iudicone, D., G. Madec, B. Blanke, and S. Speich, 2008: The role of Southern Ocean surface forcings and mixing in the global conveyor. J. Phys. Oceanogr., 38, 13771400, doi:10.1175/2008JPO3519.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1983: Deep convection in the World Ocean. Rev. Geophys., 21, 126, doi:10.1029/RG021i001p00001.

  • Klocker, A., and T. J. McDougall, 2010: Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J. Phys. Oceanogr., 40, 16901709, doi:10.1175/2010JPO4303.1.

    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR Tech. Rep., 105 pp., doi:10.5065/D6KK98Q6.

  • Large, W., and S. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

  • Losch, M., A. Adcroft, and J.-M. Campin, 2004: How sensitive are coarse general circulation models to fundamental approximations in the equations of motion? J. Phys. Oceanogr., 34, 306319, doi:10.1175/1520-0485(2004)034<0306:HSACGC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madec, G., and M. Imbard, 1996: A global ocean mesh to overcome the North Pole singularity. Climate Dyn., 12, 381388, doi:10.1007/BF00211684.

    • Search Google Scholar
    • Export Citation
  • Madec, G., and Coauthors, 2014: Nemo ocean engine, version 3.6. Note du Pole de Modelisation de l’Institut Pierre-Simon Laplace Tech. Rep. 27, 392 pp. [Available online at http://www.nemo-ocean.eu/content/download/164969/671898/file/NEMO_book_V3_6.pdf.]

  • McDougall, T. J., 1987: Neutral surfaces. J. Phys. Oceanogr., 17, 19501964, doi:10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2.

  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, doi:10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and D. R. Jackett, 2005: The material derivative of neutral density. J. Mar. Res., 63, 159185, doi:10.1357/0022240053693734.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., D. R. Jackett, F. J. Millero, R. Pawlowicz, and P. M. Barker, 2012: A global algorithm for estimating Absolute Salinity. Ocean Sci., 8, 11231134, doi:10.5194/os-8-1123-2012.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., D. Swingedouw, J. Deshayes, O. Marti, C. Talandier, R. Séférian, M. Lengaigne, and G. Madec, 2013: On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5: A mean state comparison. Ocean Modell., 72, 167184, doi:10.1016/j.ocemod.2013.09.001.

    • Search Google Scholar
    • Export Citation
  • Pollmann, F., F. Roquet, and G. Madec, 2015: Effects of the asymmetry between surface and interior flow on the dynamics of a thermohaline loop. J. Phys. Oceanogr., doi:10.1175/JPO-D-15-0022.1, in press.

    • Search Google Scholar
    • Export Citation
  • Roquet, F., 2013: Dynamical potential energy: A new approach to ocean energetics. J. Phys. Oceanogr., 43, 457476, doi:10.1175/JPO-D-12-098.1.

    • Search Google Scholar
    • Export Citation
  • Roquet, F., G. Madec, T. J. McDougall, and P. M. Barker, 2015: Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Ocean Modell., 90, 2943, doi:10.1016/j.ocemod.2015.04.002.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. J. Geophys. Res., 105, 23 92723 942, doi:10.1029/2000JC900089.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, S., R. Bleck, C. Rooth, J. Dukowicz, E. Chassignet, and P. Killworth, 1999: Inclusion of thermobaricity in isopycnic-coordinate ocean models. J. Phys. Oceanogr., 29, 27192729, doi:10.1175/1520-0485(1999)029<2719:IOTIIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., H. Goosse, G. Madec, T. Fichefet, C. Ethe, and V. Duliere, 2005: On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model. Ocean Modell., 8, 175201, doi:10.1016/j.ocemod.2003.12.009.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics.Cambridge University Press, 745 pp.

  • Wunsch, C., 2005: Thermohaline loops, Stommel box models, and the Sandström theorem. Tellus, 57A, 8499, doi:10.1111/j.1600-0870.2005.00093.x.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2010: Dynamic enthalpy, Conservative Temperature, and the seawater Boussinesq approximation. J. Phys. Oceanogr., 40, 394400, doi:10.1175/2009JPO4294.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1633 597 171
PDF Downloads 1405 412 55