The Role of Intermittency in Internal-Wave Shear Dispersion

Eric Kunze NorthWest Research Associates, Redmond, Washington

Search for other papers by Eric Kunze in
Current site
Google Scholar
PubMed
Close
and
Miles A. Sundermeyer School for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts

Search for other papers by Miles A. Sundermeyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper revisits a long-standing discrepancy between (i) 1–5-km isopycnal diffusivities of O(1) m2 s−1 based on dye spreading and (ii) inferences of O(0.1) m2 s−1 from internal-wave shear dispersion Kh ~ 〈Kz〉〈〉/f2 in several studies in the stratified ocean interior, where 〈Kz〉 is the bulk average diapycnal diffusivity, 〈〉 the finescale shear variance, and f the Coriolis frequency. It is shown that, taking into account (i) the intermittency of shear-driven turbulence, (ii) its lognormality, and (iii) its correlation with unstable finescale near-inertial shear, internal-wave shear dispersion cannot necessarily be discounted based on available information. This result depends on an infrequent occurrence of turbulence bursts, as is observed, and a correlation between diapycnal diffusivity Kz and the off-diagonal vertical strain, or the vertical gradient of horizontal displacement, |χz| = |∫Vz dt|, which is not well known and may vary from region to region. Taking these factors into account, there may be no need to invoke additional submesoscale mixing mechanisms such as vortical-mode stirring or internal-wave Stokes drift to explain the previously reported discrepancies.

Corresponding author address: Eric Kunze, NorthWest Research Associates, 4126 148th Ave. NE, Redmond, WA 98052. E-mail: kunze@nwra.com

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Abstract

This paper revisits a long-standing discrepancy between (i) 1–5-km isopycnal diffusivities of O(1) m2 s−1 based on dye spreading and (ii) inferences of O(0.1) m2 s−1 from internal-wave shear dispersion Kh ~ 〈Kz〉〈〉/f2 in several studies in the stratified ocean interior, where 〈Kz〉 is the bulk average diapycnal diffusivity, 〈〉 the finescale shear variance, and f the Coriolis frequency. It is shown that, taking into account (i) the intermittency of shear-driven turbulence, (ii) its lognormality, and (iii) its correlation with unstable finescale near-inertial shear, internal-wave shear dispersion cannot necessarily be discounted based on available information. This result depends on an infrequent occurrence of turbulence bursts, as is observed, and a correlation between diapycnal diffusivity Kz and the off-diagonal vertical strain, or the vertical gradient of horizontal displacement, |χz| = |∫Vz dt|, which is not well known and may vary from region to region. Taking these factors into account, there may be no need to invoke additional submesoscale mixing mechanisms such as vortical-mode stirring or internal-wave Stokes drift to explain the previously reported discrepancies.

Corresponding author address: Eric Kunze, NorthWest Research Associates, 4126 148th Ave. NE, Redmond, WA 98052. E-mail: kunze@nwra.com

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Save
  • Baker, M. A., and C. H. Gibson, 1987: Sampling turbulence in the stratified ocean: Statistical consequences of strong intermittency. J. Phys. Oceanogr., 17, 18171836, doi:10.1175/1520-0485(1987)017<1817:STITSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brunner-Suzuki, A.-M. E. G., M. A. Sundermeyer, and M.-P. Lelong, 2014: Upscale energy transfer induced by the vortical mode and internal waves. J. Phys. Oceanogr., 44, 24462469, doi:10.1175/JPO-D-12-0149.1.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., N. Grisouard, and M. Holmes-Certon, 2013: Strong particle dispersion by weakly dissipative random internal waves. J. Fluid Mech., 719, R4, doi:10.1017/jfm.2013.71.

    • Search Google Scholar
    • Export Citation
  • Cole, S. T., and D. L. Rudnick, 2012: The spatial distribution and annual cycle of upper ocean thermohaline structure. J. Geophys. Res., 117, C02027, doi:10.1029/2011JC007033.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and R.-C. Lien, 2000: The wave–turbulence transition for stratified flows. J. Phys. Oceanogr., 30, 16691678, doi:10.1175/1520-0485(2000)030<1669:TWTTFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1996: Sampling turbulent dissipation. J. Phys. Oceanogr., 26, 341358, doi:10.1175/1520-0485(1996)026<0341:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Desaubies, Y., and W. K. Smith, 1982: Statistics of Richardson number and instability in oceanic internal waves. J. Phys. Oceanogr., 12, 12451259, doi:10.1175/1520-0485(1982)012<1245:SORNAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov scales. J. Geophys. Res., 87, 9601–9613, doi:10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1978: Measurements and models of finestructure, internal gravity waves and wave breaking in the deep ocean. J. Geophys. Res., 83, 29893009, doi:10.1029/JC083iC06p02989.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1990: Do we really know how to scale the turbulent kinetic energy dissipation rate ε due to breaking of oceanic internal waves? J. Geophys. Res., 95, 15 97115 974, doi:10.1029/JC095iC09p15971.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., P. J. Hendricks, T. B. Sanford, T. R. Osborn, and A. J. Williams III, 1981: A composite spectrum of vertical shear in the upper ocean. J. Phys. Oceanogr., 11, 12581271, doi:10.1175/1520-0485(1981)011<1258:ACSOVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Gregg, M. C., and T. B. Sanford, 1988: The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res., 93, 12 38112 392, doi:10.1029/JC093iC10p12381.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. A. D’Asaro, T. J. Shay, and N. Larson, 1986: Observations of persistent mixing and near-inertial internal waves. J. Phys. Oceanogr., 16, 856885, doi:10.1175/1520-0485(1986)016<0856:OOPMAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., H. E. Seim, and D. B. Percival, 1993: Statistics of shear and turbulent dissipation profiles in random internal wave fields. J. Phys. Oceanogr., 23, 17771799, doi:10.1175/1520-0485(1993)023<1777:SOSATD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Hazel, P., 1972: Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech., 51, 3961, doi:10.1017/S0022112072001065.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, doi:10.1029/JC091iC07p08487.

    • Search Google Scholar
    • Export Citation
  • Inall, M. E., D. Aleynik, and C. Neil, 2013: Horizontal advection and dispersion in a stratified sea: The role of inertial oscillations. Prog. Oceanogr., 117, 2536, doi:10.1016/j.pocean.2013.06.008.

    • Search Google Scholar
    • Export Citation
  • Itsweire, E. C., T. R. Osborn, and T. P. Stanton, 1989: Horizontal distribution and characteristics of shear layers in the seasonal thermocline. J. Phys. Oceanogr., 19, 301320, doi:10.1175/1520-0485(1989)019<0301:HDACOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Itsweire, E. C., J. R. Koseff, D. A. Briggs, and J. H. Ferziger, 1993: Turbulence in stratified shear flows: Implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr., 23, 15081522, doi:10.1175/1520-0485(1993)023<1508:TISSFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and I. M. Cohen, 2004: Fluid Mechanics. Elsevier, 759 pp.

  • Kunze, E., 1993: Submesocale dynamics near a seamount. Part II: The partition of energy between internal waves and geostrophy. J. Phys. Oceanogr., 23, 25892601, doi:10.1175/1520-0485(1993)023<2589:SDNASP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2014: The relation between unstable shear layer thicknesses and turbulence lengthscales. J. Mar. Res., 72, 95104, doi:10.1357/002224014813758977.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and T. B. Sanford, 1993: Submesoscale dynamics near a seamount. Part I: Measurements of Ertel vorticity. J. Phys. Oceanogr., 23, 25672588, doi:10.1175/1520-0485(1993)023<2567:SDNASP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and J. M. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27, 26632693, doi:10.1175/1520-0485(1997)027<2663:TDVDSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., M. G. Briscoe, and A. J. Williams III, 1990a: Interpreting shear and strain finestructure from a neutrally buoyant float. J. Geophys. Res., 95, 18 11118 125, doi:10.1029/JC095iC10p18111.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., A. J. Williams III, and M. G. Briscoe, 1990b: Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res., 95, 18 12718 142, doi:10.1029/JC095iC10p18127.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., J. M. Klymak, R.-C. Lien, R. Ferrari, C. M. Lee, M. A. Sundermeyer, and L. Goodman, 2015: Submesoscale water-mass spectra in the Sargasso Sea. J. Phys. Oceanogr., 45, 13251338, doi:10.1175/JPO-D-14-0108.1.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, doi:10.1029/98JC01738.

    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and M. A. Sundermeyer, 2005: Geostrophic adjustment of an isolated diapycnal mixing event and its implications for small-scale lateral dispersion. J. Phys. Oceanogr., 35, 23522367, doi:10.1175/JPO2835.1.

    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., M. A. Sundermeyer, and E. Kunze, 2002: Numerical simulations of lateral dispersion by the relaxation of diapycnal mixing events. Eos, Trans. Amer. Geophys. Union, 83 (Meeting Suppl.), Abstract OS31O-08.

  • Lumpkin, R., and S. Elipot, 2010: Surface drifter pair spreading in the North Atlantic. J. Geophys. Res., 115, C12017, doi:10.1029/2010JC006338.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2003: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492, doi:10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marmorino, G. O., J. P. Dugan, and T. E. Evans, 1986: Horizontal variability of microstructure in the vicinity of a Sargasso Sea front. J. Phys. Oceanogr., 16, 967986, doi:10.1175/1520-0485(1986)016<0967:HVOMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marmorino, G. O., L. J. Rosenblum, and C. L. Trump, 1987: Finescale temperature variability: The influence of near-inertial waves. J. Geophys. Res., 92, 13 04913 069, doi:10.1029/JC092iC12p13049.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Search Google Scholar
    • Export Citation
  • Moniz, R. J., D. A. Fong, C. B. Woodson, S. K. Willis, M. T. Stacey, and S. G. Monismith, 2014: Scale-dependent dispersion within the stratified interior on the shelf of northern Monterey Bay. J. Phys. Oceanogr., 44, 10491064, doi:10.1175/JPO-D-12-0229.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101, 14 09514 109, doi:10.1029/96JC00507.

    • Search Google Scholar
    • Export Citation
  • Müller, P., 1984: Small-scale vortical motions. Internal Gravity Waves and Small Scale Turbulence: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 249–262.

  • Müller, P., R.-C. Lien, and R. Williams, 1988: Estimates of potential vorticity at small scales in the ocean. J. Phys. Oceanogr., 18, 401416, doi:10.1175/1520-0485(1988)018<0401:EOPVAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., 1981: The propagation of internal waves in a geostrophic current. J. Phys. Oceanogr., 11, 12241233, doi:10.1175/1520-0485(1981)011<1224:TPOIWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of diffusion form dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. R., M. E. Inall, and J. Sharples, 2013: The physical oceanography of Jones Bank: A mixing hotspot in the Celtic Sea. Prog. Oceanogr., 117, 924, doi:10.1016/j.pocean.2013.06.009.

    • Search Google Scholar
    • Export Citation
  • Peters, H., M. C. Gregg, and T. B. Sanford, 1995: On the parameterization of equatorial turbulence: Effect of finescale variations below the range of the diurnal cycle. J. Geophys. Res., 100, 18 33318 348, doi:10.1029/95JC01513.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2014: Vortical and internal wave shear and strain. J. Phys. Oceanogr., 44, 20702092, doi:10.1175/JPO-D-13-090.1.

  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 693–12 698, doi:10.1073/pnas.1402452111.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 1996: Statistics of the Richardson number: Mixing models and finestructure. J. Phys. Oceanogr., 26, 14091425, doi:10.1175/1520-0485(1996)026<1409:SOTRNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterization of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., E. Kunze, J. M. Toole, and R. W. Schmitt, 2003: The partition of finescale energy into internal waves and subinertial motions. J. Phys. Oceanogr., 33, 234248, doi:10.1175/1520-0485(2003)033<0234:TPOFEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rohr, J. J., E. C. Itsweire, K. N. Helland, and C. W. Van Atta, 1988: Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech., 195, 77111, doi:10.1017/S0022112088002332.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D., and R. Ferrari, 1999: Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283, 526529, doi:10.1126/science.283.5401.526.

    • Search Google Scholar
    • Export Citation
  • Scotti, R. S., and G. M. Corcos, 1972: An experiment on the stability of small disturbances in a stratified free-shear layer. J. Fluid Mech., 52, 499528, doi:10.1017/S0022112072001569.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., and Coauthors, 2015: The LatMix summer campaign: Submesoscale stirring in the upper ocean. Bull. Amer. Meteor. Soc., 96, 1257–1279, doi:10.1175/BAMS-D-14-00015.1.

    • Search Google Scholar
    • Export Citation
  • Smith, S., and R. Ferrari, 2009: The production and dissipation of compensated thermohaline variance by mesoscale stiriring. J. Phys. Oceanogr., 39, 24772501, doi:10.1175/2009JPO4103.1.

    • Search Google Scholar
    • Export Citation
  • Sun, H., and E. Kunze, 1999: Internal wave–wave interactions. Part I: The role of internal wave vertical divergence. J. Phys. Oceanogr., 29, 28862904, doi:10.1175/1520-0485(1999)029<2886:IWWIPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., and J. R. Ledwell, 2001: Lateral dispersion over the continental shelf: Analysis of dye-release experiments. J. Geophys. Res., 106, 96039621, doi:10.1029/2000JC900138.

    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., and M.-P. Lelong, 2005: Numerical simulations of lateral dispersion by the relaxation of diapycnal mixing events. J. Phys. Oceanogr., 35, 23682386, doi:10.1175/JPO2834.1.

    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., J. R. Ledwell, N. S. Oakey, and B. J. W. Greenan, 2005: Stirring by small-scale vortices caused by patchy mixing. J. Phys. Oceanogr., 35, 12451262, doi:10.1175/JPO2713.1.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1971: Experiments on the instability of stratified shear flows: Miscible flows. J. Fluid Mech., 46, 299319, doi:10.1017/S0022112071000557.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., and R. W. Schmitt, 1987: Small-scale structures in the north-west Atlantic sub-tropical front. Nature, 327, 4749, doi:10.1038/327047a0.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., P. B. Rhines, and C. J. R. Garrett, 1982: Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515527, doi:10.1175/1520-0485(1982)012<0515:SFDIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1289 642 12
PDF Downloads 142 40 7