Toward a K-Profile Parameterization of Langmuir Turbulence in Shallow Coastal Shelves

Nityanand Sinha University of South Florida, Tampa, Florida

Search for other papers by Nityanand Sinha in
Current site
Google Scholar
PubMed
Close
,
Andres E. Tejada-Martínez University of South Florida, Tampa, Florida

Search for other papers by Andres E. Tejada-Martínez in
Current site
Google Scholar
PubMed
Close
,
Cigdem Akan University of South Florida, Tampa, Florida

Search for other papers by Cigdem Akan in
Current site
Google Scholar
PubMed
Close
, and
Chester E. Grosch Ocean, Earth and Atmospheric Sciences, and Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia

Search for other papers by Chester E. Grosch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Interaction between the wind-driven shear current and the Stokes drift velocity induced by surface gravity waves gives rise to Langmuir turbulence in the upper ocean. Langmuir turbulence consists of Langmuir circulation (LC) characterized by a wide range of scales. In unstratified shallow water, the largest scales of Langmuir turbulence engulf the entire water column and thus are referred to as full-depth LC. Large-eddy simulations (LESs) of Langmuir turbulence with full-depth LC in a wind-driven shear current have revealed that vertical mixing due to LC erodes the bottom log-law velocity profile, inducing a profile resembling a wake law. Furthermore, in the interior of the water column, two sources of Reynolds shear stress, turbulent (nonlocal) transport and local Stokes drift shear production, can combine to lead to negative mean velocity shear. Meanwhile, near the surface, Stokes drift shear serves to intensify small-scale eddies leading to enhanced vertical mixing and disruption of the surface log law. A K-profile parameterization (KPP) of the Reynolds shear stress comprising local and nonlocal components is introduced, capturing these basic mechanisms by which Langmuir turbulence in unstratified shallow water impacts the vertical mixing of momentum. Single-water-column, Reynolds-averaged Navier–Stokes simulations with the new parameterization are presented, showing good agreement with LES in terms of mean velocity. Results show that coefficients in the KPP may be parameterized based on attributes of the full-depth LC.

Corresponding author address: Andres E. Tejada-Martínez, Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Ave., ENB 118, Tampa, FL 33620. E-mail: aetejada@usf.edu

Abstract

Interaction between the wind-driven shear current and the Stokes drift velocity induced by surface gravity waves gives rise to Langmuir turbulence in the upper ocean. Langmuir turbulence consists of Langmuir circulation (LC) characterized by a wide range of scales. In unstratified shallow water, the largest scales of Langmuir turbulence engulf the entire water column and thus are referred to as full-depth LC. Large-eddy simulations (LESs) of Langmuir turbulence with full-depth LC in a wind-driven shear current have revealed that vertical mixing due to LC erodes the bottom log-law velocity profile, inducing a profile resembling a wake law. Furthermore, in the interior of the water column, two sources of Reynolds shear stress, turbulent (nonlocal) transport and local Stokes drift shear production, can combine to lead to negative mean velocity shear. Meanwhile, near the surface, Stokes drift shear serves to intensify small-scale eddies leading to enhanced vertical mixing and disruption of the surface log law. A K-profile parameterization (KPP) of the Reynolds shear stress comprising local and nonlocal components is introduced, capturing these basic mechanisms by which Langmuir turbulence in unstratified shallow water impacts the vertical mixing of momentum. Single-water-column, Reynolds-averaged Navier–Stokes simulations with the new parameterization are presented, showing good agreement with LES in terms of mean velocity. Results show that coefficients in the KPP may be parameterized based on attributes of the full-depth LC.

Corresponding author address: Andres E. Tejada-Martínez, Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Ave., ENB 118, Tampa, FL 33620. E-mail: aetejada@usf.edu
Save
  • Akan, C., A. E. Tejada-Martínez, C. E. Grosch, and G. Martinat, 2013: Scalar transport in large-eddy simulation of Langmuir turbulence in shallowwater. Cont. Shelf Res., 55, 116, doi:10.1016/j.csr.2012.12.009.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, doi:10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Bredberg, J., 2000: On the wall boundary condition for turbulence model. Internal Rep. 00/4, Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology, Gothenburg, Sweden, 21 pp.

  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, doi:10.1017/S0022112076001420.

    • Search Google Scholar
    • Export Citation
  • D’Alessio, S. J. D., K. Abdella, and N. A. McFarlane, 1998: A new second-order turbulence closure scheme for modeling the oceanic mixed layer. J. Phys. Oceanogr., 28, 16241641, doi:10.1175/1520-0485(1998)028<1624:ANSOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, doi:10.1146/annurev-marine-010213-135138.

    • Search Google Scholar
    • Export Citation
  • Frech, M., and L. Mahrt, 1995: A two-scale mixing formulation for the atmospheric boundary layer. Bound.-Layer Meteor., 73, 91104, doi:10.1007/BF00708931.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and J. R. Wells, 2007: Langmuir turbulence in shallow water. Part 1. Observations. J. Fluid Mech., 576, 2761, doi:10.1017/S0022112006004575.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., J. R. Wells, A. E. Tejada-Martínez, and C. E. Grosch, 2004: Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. Science, 306, 19251928, doi:10.1126/science.1100849.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2013: A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43, 673697, doi:10.1175/JPO-D-12-0105.1.

    • Search Google Scholar
    • Export Citation
  • Holm, D., 1996: The ideal Craik-Leibovich equations. Physica D, 98, 415441, doi:10.1016/0167-2789(96)00105-4.

  • Kantha, L. H., and C. A. Clayson, 2004: On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell., 6, 101124, doi:10.1016/S1463-5003(02)00062-8.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2011: The influence of crosswind tidal currents on Langmuir circulation in a shallow ocean. J. Geophys. Res., 116, C08005, doi:10.1029/2011JC006971.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., J. Plueddemann, and P. P. Sullivan, 2012: Nonlocal transport due to Langmuir circulation in a coastal ocean. J. Geophys. Res., 117, C12007, doi:10.1029/2012JC008340.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, doi:10.1016/j.dsr.2004.09.004.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1992: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids, 4A, 633, doi:10.1063/1.858280.

  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, doi:10.1016/S1353-2561(01)00041-X.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J. Liang, and P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breakers, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, doi:10.1175/JPO-D-12-07.1.

    • Search Google Scholar
    • Export Citation
  • Papavassiliou, D. V. D. V., and T. J. T. J. Hanratty, 1997: Transport of a passive scalar in a turbulent channel flow. Int. J. Heat Mass Transfer, 40, 13031311, doi:10.1016/S0017-9310(96)00202-5.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1967: The Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 269 pp.

  • Pope, S. B., 2000: Turbulent Flows. 1st ed. Cambridge University Press, 802 pp.

  • Savidge, W., A. Gargett, R. Jahnke, J. Nelson, D. Savidge, R. T. Short, and G. Voulgaris, 2008: Forcing and dynamics of seafloor-water column exchange on a broad continental shelf. Oceanography, 21 (4), 179184.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, doi:10.1029/94JC03202.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., E. D. Skyllingstad, G. B. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dyn., 52, 104115, doi:10.1007/s10236-002-0012-9.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. C., 2012: The influence of Langmuir turbulence on the scaling for the dissipation rate in the oceanic boundary layer. J. Geophys. Res., 117, C05015, doi:10.1029/2011JC007235.

    • Search Google Scholar
    • Export Citation
  • Tejada-Martínez, A. E., and C. E. Grosch, 2007: Langmuir turbulence in shallow water. Part 2. Large-eddy simulation. J. Fluid Mech., 576, 63108, doi:10.1017/S0022112006004587.

    • Search Google Scholar
    • Export Citation
  • Tejada-Martínez, A. E., C. E. Grosch, A. E. Gargett, J. A. Polton, J. A. Smith, and J. A. MacKinnon, 2009: A hybrid spectral/finite-difference large-eddy simulator of turbulent processes in the upper ocean. Ocean Modell., 30, 115142, doi:10.1016/j.ocemod.2009.06.008.

    • Search Google Scholar
    • Export Citation
  • Tejada-Martínez, A. E., C. E. Grosch, N. Sinha, C. Akan, and G. Martinat, 2012: Disruption of bottom log-layer in LES of full-depth Langmuir circulation. J. Fluid Mech., 699, 7993, doi:10.1017/jfm.2012.84.

    • Search Google Scholar
    • Export Citation
  • Tejada-Martínez, A. E., C. Akan, N. Sinha, C. E. Grosch, and G. Martinat, 2013: Surface dynamics in LES of full-depth Langmuir circulation in shallow water. Phys. Scr., T155, 014008, doi:10.1088/0031-8949/2013/T155/014008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 858 538 39
PDF Downloads 221 66 6