Role of Near-Inertial Internal Waves in Subthermocline Diapycnal Mixing in the Northern Gulf of Mexico

Zhao Jing Department of Oceanography, Texas A&M University, College Station, Texas, and Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Zhao Jing in
Current site
Google Scholar
PubMed
Close
,
Ping Chang Department of Oceanography, and Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, and Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Ping Chang in
Current site
Google Scholar
PubMed
Close
,
Steven F. DiMarco Department of Oceanography, and Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas

Search for other papers by Steven F. DiMarco in
Current site
Google Scholar
PubMed
Close
, and
Lixin Wu Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Lixin Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Moored ADCP data collected in the northern Gulf of Mexico are analyzed to examine near-inertial internal waves and their contribution to subthermocline diapycnal mixing based on a finescale parameterization of deep ocean mixing. The focus of the study is on the impact of near-inertial internal waves generated by an extreme weather event—that is, Hurricane Katrina—and by month-to-month variation in weather patterns on the diapycnal mixing. The inferred subthermocline diapycnal mixing exhibits pronounced elevation in the wake of Katrina. Both the increased near-inertial (0.8–1.8f, where f is the Coriolis frequency) and superinertial (>1.8f) shear variances contribute to the elevated diapycnal mixing, but the former plays a more dominant role. The intense wind work on near-inertial motions by the hurricane is largely responsible for the energetic near-inertial shear variance. Energy transfer from near-inertial to superinertial internal waves, however, appears to play an important role in elevating the superinertial shear variance. The inferred subthermocline diapycnal mixing in the region also exhibits significant month-to-month variation with the estimated diffusivity in January 2006 about 3 times the values in November and December 2005. The subseasonal change in the diapycnal mixing mainly results from the subseasonal variation of the near-inertial wind work that causes intensification of the near-inertial shear in January 2006.

Corresponding author address: Zhao Jing, Department of Oceanography, Texas A&M University, MS 3146 TAMU, College Station, TX 77843-3146. E-mail: jingzhao198763@sina.com

Abstract

Moored ADCP data collected in the northern Gulf of Mexico are analyzed to examine near-inertial internal waves and their contribution to subthermocline diapycnal mixing based on a finescale parameterization of deep ocean mixing. The focus of the study is on the impact of near-inertial internal waves generated by an extreme weather event—that is, Hurricane Katrina—and by month-to-month variation in weather patterns on the diapycnal mixing. The inferred subthermocline diapycnal mixing exhibits pronounced elevation in the wake of Katrina. Both the increased near-inertial (0.8–1.8f, where f is the Coriolis frequency) and superinertial (>1.8f) shear variances contribute to the elevated diapycnal mixing, but the former plays a more dominant role. The intense wind work on near-inertial motions by the hurricane is largely responsible for the energetic near-inertial shear variance. Energy transfer from near-inertial to superinertial internal waves, however, appears to play an important role in elevating the superinertial shear variance. The inferred subthermocline diapycnal mixing in the region also exhibits significant month-to-month variation with the estimated diffusivity in January 2006 about 3 times the values in November and December 2005. The subseasonal change in the diapycnal mixing mainly results from the subseasonal variation of the near-inertial wind work that causes intensification of the near-inertial shear in January 2006.

Corresponding author address: Zhao Jing, Department of Oceanography, Texas A&M University, MS 3146 TAMU, College Station, TX 77843-3146. E-mail: jingzhao198763@sina.com
Save
  • Adalsteinsson, D. D., and Coauthors, 2013: Subsurface trapping of oil plumes in stratification: Laboratory investigations. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophys. Monogr., Vol. 195, Amer. Geophys. Union, 257–262.

  • Alford, M. H., 2003: Improved global maps and 54-years history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and R. Pinkel, 2000: Observations of overturning in the thermocline: The context of ocean mixing. J. Phys. Oceanogr., 30, 805832, doi:10.1175/1520-0485(2000)030<0805:OOOITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909, doi:10.1175/JPO-D-11-092.1.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., S. G. Llewellyn Smith, and W. R. Young, 1998: Elevated dispersion of near-inertial waves in an idealized geostrophic flow. J. Mar. Res., 56, 140, doi:10.1357/002224098321836091.

    • Search Google Scholar
    • Export Citation
  • Brooks, D. A., 1983: The wake of Hurricane Allen in the western Gulf of Mexico. J. Phys. Oceanogr., 13, 117129, doi:10.1175/1520-0485(1983)013<0117:TWOHAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cole, K. L., and S. F. DiMarco, 2010: Low-frequency variability of currents in the deepwater eastern Gulf of Mexico. U.S. Dept. of the Interior OCS Study MMS 2010-015, 136 pp.

  • Cox, J., and Evans-Hamilton, Inc., 2011: Physical, chemical, and deepwater current profiles collected from CTD, XBT, and ADCP moorings in the Eastern Gulf of Mexico from January 19, 2005 to January 28, 2006. NOAA National Oceanographic Data Center, accessed 3 May 2013. [Available online at http://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0070922.]

  • Cox, J., C. Coomers, S. DiMarco, K. Donohue, G. Forristall, P. Hamilton, R. Leben, and D. R. Watts, 2010: Study of deepwater currents in the eastern Gulf of Mexico. U.S. Dept. of the Interior OCS Study BOEMRE 2010-041, 468 pp.

  • D’Asaro, E. A., and H. Perkins, 1984: A near-inertial internal wave spectrum for the Sargasso Sea in late summer. J. Phys. Oceanogr., 14, 489505, doi:10.1175/1520-0485(1984)014<0489:ANIIWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DiMarco, S. F., and R. O. Reid, 1998: Characterization of the principal tidal current constituents on the Texas-Louisiana shelf. J. Geophys. Res., 103, 30933109, doi:10.1029/97JC03289.

    • Search Google Scholar
    • Export Citation
  • DiMarco, S. F., J. Strauss, N. May, R. L. Mullins-Perry, E. Grossman, and D. Shormann, 2012: Texas coastal hypoxia linked to Brazos River discharge as revealed by oxygen isotopos. Aquat. Geochem., 18, 159181, doi:10.1007/s10498-011-9156-x.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/POSEIDON altimeter data. J. Geophys. Res., 106, 22 47522 502, doi:10.1029/2000JC000699.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, doi:10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1990: Do we really know how to scale the turbulent kinetic energy dissipation rates due to break of oceanic internal waves? J. Geophys. Res., 95, 15 97115 974, doi:10.1029/JC095iC09p15971.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, doi:10.1146/annurev.fl.11.010179.002011.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, doi:10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and E. Kunze, 1991: Internal wave shear and strain in Santa Monica Basin. J. Geophys. Res., 96, 16 70916 719, doi:10.1029/91JC01385.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial ocean waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2010: Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40, 13201337, doi:10.1175/2010JPO4309.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, doi:10.1029/2000GL012044.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi:10.1029/2005GL023289.

    • Search Google Scholar
    • Export Citation
  • Jing, Z., and L. Wu, 2010: Seasonal variation of turbulent diapycnal mixing in the northwestern Pacific stirred by wind stress. Geophys. Res. Lett., 37, L23604, doi:10.1029/2010GL045418.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, N. J. Norton, S. R. Jayne, M. H. Alford, and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, doi:10.1175/JCLI-D-12-00181.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lee, D.-K., and P. P. Niiler, 1998: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103, 75797591, doi:10.1029/97JC03200.

    • Search Google Scholar
    • Export Citation
  • Lehamann, E. L., and H. J. M. D’Abrera, 1975: Nonparametrics: Statistical Methods Based on Ranks. Probability and Statistics Series, Holden-Day, 457 pp.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Liu, Y., A. MacFadyen, Z.-G. Ji, and R. H. Weisberg, 2013: Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record Breaking Enterprise. Geophys. Monogr., Vol. 195, Amer. Geophys. Union, 271 pp.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, R., 2005: Plume dynamics. Encyclopedia of Nonlinear Science, A. Scott, Ed., Routledge, 724–727.

  • Mendoza, V. M., E. E. Villanueva, and J. Adem, 2005: On the annual cycle of the sea surface temperature and the mixed depth in the Gulf of Mexico. Atmósfera, 18, 127148.

    • Search Google Scholar
    • Export Citation
  • Montenegro, A., M. Eby, A. J. Weaver, and S. R. Jayne, 2007: Response of a climate model to tidal mixing parameterization under present day and last glacial maximum conditions. Ocean Modell., 19, 125137, doi:10.1016/j.ocemod.2007.06.009.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Efficiency of mixing in the main thermocline. J. Geophys. Res., 101, 12 05712 069, doi:10.1029/96JC00508.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, doi:10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., 1970: On the generation by winds of inertial waves in the ocean. Deep-Sea Res. Oceanogr. Abstr., 17, 795812, doi:10.1016/0011-7471(70)90042-2.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard Jr., 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813821, doi:10.1016/0011-7471(70)90043-4.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. D. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., E. Kunze, J. Hummon, and E. Firing, 2002: The finescale response of lowered ADCP velocity profiles. J. Atmos. Oceanic Technol., 19, 205224, doi:10.1175/1520-0426(2002)019<0205:TFROLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., A. C. Naveira Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, doi:10.1002/2013JC008979.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Coauthors, 2010: Reconstruction of Hurricane Katrina’s wind fields for storm surge and wave hindcasting. Ocean Eng., 37, 2636, doi:10.1016/j.oceaneng.2009.08.014.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13, 949965, doi:10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, doi:10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and G. S. Carter, 2012: Time-varying parametric subharmonic instability from repeat CTD surveys in the northwestern Pacific Ocean. J. Geophys. Res., 117, C09012, doi:10.1029/2012JC007882.

    • Search Google Scholar
    • Export Citation
  • Richards, K. J., S.-P. Xie, and T. Miyama, 2009: Vertical mixing in the ocean and its impact on the coupled ocean–atmosphere system in the eastern tropical Pacific. J. Climate, 22, 37033719, doi:10.1175/2009JCLI2702.1.

    • Search Google Scholar
    • Export Citation
  • Saenko, O., and W. Merrifield, 2005: On the effect of topographically elevated mixing on the global ocean circulation. J. Phys. Oceanogr., 35, 826834, doi:10.1175/JPO2722.1.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and R. L. Elsberry, 1987: Near-inertial ocean current response to Hurricane Frederic. J. Phys. Oceanogr., 17, 12491269, doi:10.1175/1520-0485(1987)017<1249:NIOCRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., R. L. Elsberry, and P. G. Black, 1989: Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr., 19, 649669, doi:10.1175/1520-0485(1989)019<0649:VSOTOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, doi:10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Jing, S. Riser, and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366, doi:10.1038/ngeo1156.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and J. Zhao, 2005: Elevated vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys. Res. Lett., 32, L18602, doi:10.1029/2005GL023643.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and C. Eden, 2007: Spreading of near-inertial energy in a 1/12° model of the North Atlantic Ocean. Geophys. Res. Lett., 34, L10609, doi:10.1029/2007GL029895.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, C. Eden, and T. Hibiya, 2009: On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J. Phys. Oceanogr., 39, 30403045, doi:10.1175/2009JPO4259.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. F. DiMarco, D. C. Smith IV, M. K. Howard, A. E. Jochens, and R. D. Hetland, 2009: Near-resonant ocean response to sea breeze on a stratified continental shelf. J. Phys. Oceanogr., 39, 21372155, doi:10.1175/2009JPO4054.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., D. C. Smith IV, S. F. DiMarco, and R. D. Hetland, 2010: A numerical study of sea-breeze-driven ocean Poincare wave propagation and mixing near the critical latitude. J. Phys. Oceanogr., 40, 4866, doi:10.1175/2009JPO4216.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 437 89 2
PDF Downloads 280 79 8