The M2 Internal Tide Simulated by a 1/10° OGCM

Zhuhua Li Max Planck Institute for Meteorology, and International Max Planck Research School on Earth System Modelling, Hamburg, Germany

Search for other papers by Zhuhua Li in
Current site
Google Scholar
PubMed
Close
,
Jin-Song von Storch Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Jin-Song von Storch in
Current site
Google Scholar
PubMed
Close
, and
Malte Müller Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by Malte Müller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using a concurrent simulation of the ocean general circulation and tides with the ° Max Planck Institute Ocean Model (MPI-OM), known as STORMTIDE, this study provides a near-global quantification of the low-mode M2 internal tides. The quantification is based on wavelengths and their near-global distributions obtained by applying spectral analysis to STORMTIDE velocities and on comparisons of the distributions with those derived by solving the Sturm–Liouville eigenvalue problem. The simulated wavelengths, with respect to both their magnitudes and their geographical distributions, compare well with those obtained by solving the eigenvalue problem, suggesting that the STORMTIDE internal waves are, to a first approximation, linear internal waves satisfying local dispersion relations. The simulated wavelengths of modes 1 and 2 range within 100–160 and 45–80 km, respectively. Their distributions reveal, to different degrees for both modes, a zonal asymmetry and a tendency of a poleward increase with stratification N and the Coriolis parameter f being responsible for these two features, respectively. Distributions of mode 1 wavelengths are found to be determined by both N and f, but those of mode 2 are mainly controlled by variations in N. Larger differences between the STORMTIDE wavelengths and those of the eigenvalue problem occur, particularly for mode 2, primarily in high-latitude oceans and the Kuroshio and Gulf Stream and their extensions.

Corresponding author address: Zhuhua Li, Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany. E-mail: zhuhua.li@mpimet.mpg.de

Abstract

Using a concurrent simulation of the ocean general circulation and tides with the ° Max Planck Institute Ocean Model (MPI-OM), known as STORMTIDE, this study provides a near-global quantification of the low-mode M2 internal tides. The quantification is based on wavelengths and their near-global distributions obtained by applying spectral analysis to STORMTIDE velocities and on comparisons of the distributions with those derived by solving the Sturm–Liouville eigenvalue problem. The simulated wavelengths, with respect to both their magnitudes and their geographical distributions, compare well with those obtained by solving the eigenvalue problem, suggesting that the STORMTIDE internal waves are, to a first approximation, linear internal waves satisfying local dispersion relations. The simulated wavelengths of modes 1 and 2 range within 100–160 and 45–80 km, respectively. Their distributions reveal, to different degrees for both modes, a zonal asymmetry and a tendency of a poleward increase with stratification N and the Coriolis parameter f being responsible for these two features, respectively. Distributions of mode 1 wavelengths are found to be determined by both N and f, but those of mode 2 are mainly controlled by variations in N. Larger differences between the STORMTIDE wavelengths and those of the eigenvalue problem occur, particularly for mode 2, primarily in high-latitude oceans and the Kuroshio and Gulf Stream and their extensions.

Corresponding author address: Zhuhua Li, Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany. E-mail: zhuhua.li@mpimet.mpg.de
Save
  • Arbic, B. K., A. J. Wallcraft, and E. J. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175187, doi:10.1016/j.ocemod.2010.01.007.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., J. G. Richman, J. F. Shriver, P. G. Timko, E. J. Metzger, and A. J. Wallcraft, 2012: Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25, 2029, doi:10.5670/oceanog.2012.38.

    • Search Google Scholar
    • Export Citation
  • Cherniawsky, J. Y., M. G. G. Foreman, W. R. Crawford, and R. F. Henry, 2001: Ocean tides from TOPEX/Poseidon sea level data. J. Atmos. Oceanic Technol., 18, 649664, doi:10.1175/1520-0426(2001)018<0649:OTFTPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and D. Olbers, 2014: An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr., 44, 20932106, doi:10.1175/JPO-D-13-0224.1.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, doi:10.1038/35015531.

    • Search Google Scholar
    • Export Citation
  • Exarchou, E., J.-S. von Storch, and J. H. Jungclaus, 2014: Sensitivity of transient climate change to tidal mixing: Southern Ocean heat uptake in climate change experiments performed with ECHAM5/MPIOM. Climate Dyn., 42, 17551773, doi:10.1007/s00382-013-1776-y.

    • Search Google Scholar
    • Export Citation
  • Foreman, M. G. G., J. Y. Cherniawsky, and V. A. Ballantyne, 2009: Versatile harmonic tidal analysis: Improvements and applications. J. Atmos. Oceanic Technol., 26, 806817, doi:10.1175/2008JTECHO615.1.

    • Search Google Scholar
    • Export Citation
  • Green, J. A. M., and J. Nycander, 2013: A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr., 43, 104119, doi:10.1175/JPO-D-12-023.1.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 39523972, doi:10.1175/JCLI3827.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., and J. L. McClean, 2005: An eddy resolving global 1/10° ocean simulation. Ocean Modell., 8, 3154, doi:10.1016/j.ocemod.2003.12.001.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127, doi:10.1016/S1463-5003(02)00015-X.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Montenegro, A., M. Eby, A. J. Weaver, and S. R. Jayne, 2007: Response of a climate model to tidal mixing parameterization under present day and last glacial maximum conditions. Ocean Modell., 19, 125137, doi:10.1016/j.ocemod.2007.06.009.

    • Search Google Scholar
    • Export Citation
  • Müller, M., 2012: High resolution ocean circulation and tides. German Climate Computing Center (DKRZ), accessed 22 October 2012. [Available online at http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=DKRZ_lta_510.]

  • Müller, M., 2013: On the space- and time-dependence of barotropic-to-baroclinic tidal energy conversion. Ocean Modell., 72, 242252, doi:10.1016/j.ocemod.2013.09.007.

    • Search Google Scholar
    • Export Citation
  • Müller, M., H. Haak, J. H. Jungclaus, J. Sündermann, and M. Thomas, 2010: The effect of ocean tides on a climate model simulation. Ocean Modell., 35, 304313, doi:10.1016/j.ocemod.2010.09.001.

    • Search Google Scholar
    • Export Citation
  • Müller, M., J. Y. Cherniawsky, M. G. G. Foreman, and J.-S. von Storch, 2012: Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys. Res. Lett., 39, L19607, doi:10.1029/2012GL053320.

  • Müller, M., J. Y. Cherniawsky, M. G. G. Foreman, and J.-S. von Storch, 2014: Seasonal variation of the M2 tide. Ocean Dyn., 64, 159177, doi:10.1007/s10236-013-0679-0.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer Verlag, 704 pp., doi:10.1007/978-3-642-23450-7.

  • Polzin, K. L., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, doi:10.1029/2010RG000329.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, doi:10.1016/S0079-6611(97)00025-6.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, doi:10.1029/2011GL048617.

  • Saenko, O. A., and W. J. Merryfield, 2005: On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr., 35, 826834, doi:10.1175/JPO2722.1.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., and R. Fiedler, 2007: Explicit tidal forcing in an ocean general circulation model. Geophys. Res. Lett., 34, L03611, doi:10.1029/2006GL028363.

  • Shriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko, 2012: An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J. Geophys. Res., 117, C10024, doi:10.1029/2012JC008170.

  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004a: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 30433068, doi:10.1016/j.dsr2.2004.09.015.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004b: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282, doi:10.1002/2014RG000450.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.

  • Thomas, M., J. Sündermann, and E. Maier-Reimer, 2001: Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophys. Res. Lett., 28, 24572460, doi:10.1029/2000GL012234.

    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, doi:10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, and J. B. Girton, 2012: Mapping low-mode internal tides from multisatellite altimetry. Oceanography, 25, 4251, doi:10.5670/oceanog.2012.40.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 412 108 17
PDF Downloads 264 81 12