Abstract
Using a concurrent simulation of the ocean general circulation and tides with the
Arbic, B. K., A. J. Wallcraft, and E. J. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175–187, doi:10.1016/j.ocemod.2010.01.007.
Arbic, B. K., J. G. Richman, J. F. Shriver, P. G. Timko, E. J. Metzger, and A. J. Wallcraft, 2012: Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25, 20–29, doi:10.5670/oceanog.2012.38.
Cherniawsky, J. Y., M. G. G. Foreman, W. R. Crawford, and R. F. Henry, 2001: Ocean tides from TOPEX/Poseidon sea level data. J. Atmos. Oceanic Technol., 18, 649–664, doi:10.1175/1520-0426(2001)018<0649:OTFTPS>2.0.CO;2.
Eden, C., and D. Olbers, 2014: An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr., 44, 2093–2106, doi:10.1175/JPO-D-13-0224.1.
Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775–778, doi:10.1038/35015531.
Exarchou, E., J.-S. von Storch, and J. H. Jungclaus, 2014: Sensitivity of transient climate change to tidal mixing: Southern Ocean heat uptake in climate change experiments performed with ECHAM5/MPIOM. Climate Dyn., 42, 1755–1773, doi:10.1007/s00382-013-1776-y.
Foreman, M. G. G., J. Y. Cherniawsky, and V. A. Ballantyne, 2009: Versatile harmonic tidal analysis: Improvements and applications. J. Atmos. Oceanic Technol., 26, 806–817, doi:10.1175/2008JTECHO615.1.
Green, J. A. M., and J. Nycander, 2013: A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr., 43, 104–119, doi:10.1175/JPO-D-12-023.1.
Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 3952–3972, doi:10.1175/JCLI3827.1.
Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544–565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.
Maltrud, M. E., and J. L. McClean, 2005: An eddy resolving global 1/10° ocean simulation. Ocean Modell., 8, 31–54, doi:10.1016/j.ocemod.2003.12.001.
Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91–127, doi:10.1016/S1463-5003(02)00015-X.
Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 35–56.
Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602–615, doi:10.1175/JPO-D-12-055.1.
Montenegro, A., M. Eby, A. J. Weaver, and S. R. Jayne, 2007: Response of a climate model to tidal mixing parameterization under present day and last glacial maximum conditions. Ocean Modell., 19, 125–137, doi:10.1016/j.ocemod.2007.06.009.
Müller, M., 2012: High resolution ocean circulation and tides. German Climate Computing Center (DKRZ), accessed 22 October 2012. [Available online at http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=DKRZ_lta_510.]
Müller, M., 2013: On the space- and time-dependence of barotropic-to-baroclinic tidal energy conversion. Ocean Modell., 72, 242–252, doi:10.1016/j.ocemod.2013.09.007.
Müller, M., H. Haak, J. H. Jungclaus, J. Sündermann, and M. Thomas, 2010: The effect of ocean tides on a climate model simulation. Ocean Modell., 35, 304–313, doi:10.1016/j.ocemod.2010.09.001.
Müller, M., J. Y. Cherniawsky, M. G. G. Foreman, and J.-S. von Storch, 2012: Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys. Res. Lett., 39, L19607, doi:10.1029/2012GL053320.
Müller, M., J. Y. Cherniawsky, M. G. G. Foreman, and J.-S. von Storch, 2014: Seasonal variation of the M2 tide. Ocean Dyn., 64, 159–177, doi:10.1007/s10236-013-0679-0.
Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 1977–2010, doi:10.1016/S0967-0637(98)00070-3.
Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer Verlag, 704 pp., doi:10.1007/978-3-642-23450-7.
Polzin, K. L., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, doi:10.1029/2010RG000329.
Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135–162, doi:10.1016/S0079-6611(97)00025-6.
Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, doi:10.1029/2011GL048617.
Saenko, O. A., and W. J. Merryfield, 2005: On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr., 35, 826–834, doi:10.1175/JPO2722.1.
Schiller, A., and R. Fiedler, 2007: Explicit tidal forcing in an ocean general circulation model. Geophys. Res. Lett., 34, L03611, doi:10.1029/2006GL028363.
Shriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko, 2012: An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J. Geophys. Res., 117, C10024, doi:10.1029/2012JC008170.
Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004a: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 3043–3068, doi:10.1016/j.dsr2.2004.09.015.
Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004b: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245–263, doi:10.1016/S1463-5003(03)00011-8.
Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243–282, doi:10.1002/2014RG000450.
Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 2079–2087, doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.
St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.
Thomas, M., J. Sündermann, and E. Maier-Reimer, 2001: Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophys. Res. Lett., 28, 2457–2460, doi:10.1029/2000GL012234.
von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 2185–2205, doi:10.1175/JPO-D-12-079.1.
Zhao, Z., M. H. Alford, and J. B. Girton, 2012: Mapping low-mode internal tides from multisatellite altimetry. Oceanography, 25, 42–51, doi:10.5670/oceanog.2012.40.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 412 | 108 | 17 |
PDF Downloads | 264 | 81 | 12 |
Displayed acceptance dates for articles published prior to 2023 are approximate to within a week. If needed, exact acceptance dates can be obtained by emailing amsjol@ametsoc.org.
Using a concurrent simulation of the ocean general circulation and tides with the
Using a concurrent simulation of the ocean general circulation and tides with the
Arbic, B. K., A. J. Wallcraft, and E. J. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175–187, doi:10.1016/j.ocemod.2010.01.007.
Arbic, B. K., J. G. Richman, J. F. Shriver, P. G. Timko, E. J. Metzger, and A. J. Wallcraft, 2012: Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25, 20–29, doi:10.5670/oceanog.2012.38.
Cherniawsky, J. Y., M. G. G. Foreman, W. R. Crawford, and R. F. Henry, 2001: Ocean tides from TOPEX/Poseidon sea level data. J. Atmos. Oceanic Technol., 18, 649–664, doi:10.1175/1520-0426(2001)018<0649:OTFTPS>2.0.CO;2.
Eden, C., and D. Olbers, 2014: An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr., 44, 2093–2106, doi:10.1175/JPO-D-13-0224.1.
Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775–778, doi:10.1038/35015531.
Exarchou, E., J.-S. von Storch, and J. H. Jungclaus, 2014: Sensitivity of transient climate change to tidal mixing: Southern Ocean heat uptake in climate change experiments performed with ECHAM5/MPIOM. Climate Dyn., 42, 1755–1773, doi:10.1007/s00382-013-1776-y.
Foreman, M. G. G., J. Y. Cherniawsky, and V. A. Ballantyne, 2009: Versatile harmonic tidal analysis: Improvements and applications. J. Atmos. Oceanic Technol., 26, 806–817, doi:10.1175/2008JTECHO615.1.
Green, J. A. M., and J. Nycander, 2013: A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr., 43, 104–119, doi:10.1175/JPO-D-12-023.1.
Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 3952–3972, doi:10.1175/JCLI3827.1.
Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544–565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.
Maltrud, M. E., and J. L. McClean, 2005: An eddy resolving global 1/10° ocean simulation. Ocean Modell., 8, 31–54, doi:10.1016/j.ocemod.2003.12.001.
Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91–127, doi:10.1016/S1463-5003(02)00015-X.
Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 35–56.
Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602–615, doi:10.1175/JPO-D-12-055.1.
Montenegro, A., M. Eby, A. J. Weaver, and S. R. Jayne, 2007: Response of a climate model to tidal mixing parameterization under present day and last glacial maximum conditions. Ocean Modell., 19, 125–137, doi:10.1016/j.ocemod.2007.06.009.
Müller, M., 2012: High resolution ocean circulation and tides. German Climate Computing Center (DKRZ), accessed 22 October 2012. [Available online at http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=DKRZ_lta_510.]
Müller, M., 2013: On the space- and time-dependence of barotropic-to-baroclinic tidal energy conversion. Ocean Modell., 72, 242–252, doi:10.1016/j.ocemod.2013.09.007.
Müller, M., H. Haak, J. H. Jungclaus, J. Sündermann, and M. Thomas, 2010: The effect of ocean tides on a climate model simulation. Ocean Modell., 35, 304–313, doi:10.1016/j.ocemod.2010.09.001.
Müller, M., J. Y. Cherniawsky, M. G. G. Foreman, and J.-S. von Storch, 2012: Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys. Res. Lett., 39, L19607, doi:10.1029/2012GL053320.
Müller, M., J. Y. Cherniawsky, M. G. G. Foreman, and J.-S. von Storch, 2014: Seasonal variation of the M2 tide. Ocean Dyn., 64, 159–177, doi:10.1007/s10236-013-0679-0.
Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 1977–2010, doi:10.1016/S0967-0637(98)00070-3.
Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer Verlag, 704 pp., doi:10.1007/978-3-642-23450-7.
Polzin, K. L., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, doi:10.1029/2010RG000329.
Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135–162, doi:10.1016/S0079-6611(97)00025-6.
Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, doi:10.1029/2011GL048617.
Saenko, O. A., and W. J. Merryfield, 2005: On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr., 35, 826–834, doi:10.1175/JPO2722.1.
Schiller, A., and R. Fiedler, 2007: Explicit tidal forcing in an ocean general circulation model. Geophys. Res. Lett., 34, L03611, doi:10.1029/2006GL028363.
Shriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko, 2012: An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J. Geophys. Res., 117, C10024, doi:10.1029/2012JC008170.
Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004a: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 3043–3068, doi:10.1016/j.dsr2.2004.09.015.
Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004b: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245–263, doi:10.1016/S1463-5003(03)00011-8.
Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243–282, doi:10.1002/2014RG000450.
Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 2079–2087, doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.
St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.
Thomas, M., J. Sündermann, and E. Maier-Reimer, 2001: Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophys. Res. Lett., 28, 2457–2460, doi:10.1029/2000GL012234.
von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 2185–2205, doi:10.1175/JPO-D-12-079.1.
Zhao, Z., M. H. Alford, and J. B. Girton, 2012: Mapping low-mode internal tides from multisatellite altimetry. Oceanography, 25, 42–51, doi:10.5670/oceanog.2012.40.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 412 | 108 | 17 |
PDF Downloads | 264 | 81 | 12 |