Role of Mesoscale Eddies in Cross-Frontal Transport of Heat and Biogeochemical Tracers in the Southern Ocean

Carolina O. Dufour * Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Carolina O. Dufour in
Current site
Google Scholar
PubMed
Close
,
Stephen M. Griffies NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
,
Gregory F. de Souza * Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Gregory F. de Souza in
Current site
Google Scholar
PubMed
Close
,
Ivy Frenger * Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Ivy Frenger in
Current site
Google Scholar
PubMed
Close
,
Adele K. Morrison * Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Adele K. Morrison in
Current site
Google Scholar
PubMed
Close
,
Jaime B. Palter Department of Atmospheric and Oceanic Science, McGill University, Montreal, Quebec, Canada

Search for other papers by Jaime B. Palter in
Current site
Google Scholar
PubMed
Close
,
Jorge L. Sarmiento * Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Jorge L. Sarmiento in
Current site
Google Scholar
PubMed
Close
,
Eric D. Galbraith Department of Earth and Planetary Science, McGill University, Montreal, Quebec, Canada

Search for other papers by Eric D. Galbraith in
Current site
Google Scholar
PubMed
Close
,
John P. Dunne NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by John P. Dunne in
Current site
Google Scholar
PubMed
Close
,
Whit G. Anderson NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Whit G. Anderson in
Current site
Google Scholar
PubMed
Close
, and
Richard D. Slater * Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Richard D. Slater in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the role of processes transporting tracers across the Polar Front (PF) in the depth interval between the surface and major topographic sills, which this study refers to as the “PF core.” A preindustrial control simulation of an eddying climate model coupled to a biogeochemical model [GFDL Climate Model, version 2.6 (CM2.6)– simplified version of the Biogeochemistry with Light Iron Nutrients and Gas (miniBLING) 0.1° ocean model] is used to investigate the transport of heat, carbon, oxygen, and phosphate across the PF core, with a particular focus on the role of mesoscale eddies. The authors find that the total transport across the PF core results from a ubiquitous Ekman transport that drives the upwelled tracers to the north and a localized opposing eddy transport that induces tracer leakages to the south at major topographic obstacles. In the Ekman layer, the southward eddy transport only partially compensates the northward Ekman transport, while below the Ekman layer, the southward eddy transport dominates the total transport but remains much smaller in magnitude than the near-surface northward transport. Most of the southward branch of the total transport is achieved below the PF core, mainly through geostrophic currents. This study finds that the eddy-diffusive transport reinforces the southward eddy-advective transport for carbon and heat, and opposes it for oxygen and phosphate. Eddy-advective transport is likely to be the leading-order component of eddy-induced transport for all four tracers. However, eddy-diffusive transport may provide a significant contribution to the southward eddy heat transport due to strong along-isopycnal temperature gradients.

Denotes Open Access content.

Current affiliation: ETH Zurich, Institute of Geochemistry and Petrology, Zurich, Switzerland.

Current affiliation: Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island.

Corresponding author address: Carolina O. Dufour, Program in Atmospheric and Oceanic Sciences, 300 Forrestal Road, Sayre Hall, Princeton, NJ 08544. E-mail: cdufour@princeton.edu

Abstract

This study examines the role of processes transporting tracers across the Polar Front (PF) in the depth interval between the surface and major topographic sills, which this study refers to as the “PF core.” A preindustrial control simulation of an eddying climate model coupled to a biogeochemical model [GFDL Climate Model, version 2.6 (CM2.6)– simplified version of the Biogeochemistry with Light Iron Nutrients and Gas (miniBLING) 0.1° ocean model] is used to investigate the transport of heat, carbon, oxygen, and phosphate across the PF core, with a particular focus on the role of mesoscale eddies. The authors find that the total transport across the PF core results from a ubiquitous Ekman transport that drives the upwelled tracers to the north and a localized opposing eddy transport that induces tracer leakages to the south at major topographic obstacles. In the Ekman layer, the southward eddy transport only partially compensates the northward Ekman transport, while below the Ekman layer, the southward eddy transport dominates the total transport but remains much smaller in magnitude than the near-surface northward transport. Most of the southward branch of the total transport is achieved below the PF core, mainly through geostrophic currents. This study finds that the eddy-diffusive transport reinforces the southward eddy-advective transport for carbon and heat, and opposes it for oxygen and phosphate. Eddy-advective transport is likely to be the leading-order component of eddy-induced transport for all four tracers. However, eddy-diffusive transport may provide a significant contribution to the southward eddy heat transport due to strong along-isopycnal temperature gradients.

Denotes Open Access content.

Current affiliation: ETH Zurich, Institute of Geochemistry and Petrology, Zurich, Switzerland.

Current affiliation: Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island.

Corresponding author address: Carolina O. Dufour, Program in Atmospheric and Oceanic Sciences, 300 Forrestal Road, Sayre Hall, Princeton, NJ 08544. E-mail: cdufour@princeton.edu
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, doi:10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., J. Marshall, M. Mazloff, and E. Shuckburgh, 2010: Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr., 40, 170184, doi:10.1175/2009JPO4201.1.

    • Search Google Scholar
    • Export Citation
  • Ansorge, I., J. Jackson, K. Reid, J. Durgadoo, S. Swart, and S. Eberenz, 2014: Evidence of a southward eddy corridor in the south-west Indian Ocean. Deep-Sea Res. II, 119, 6976, doi:10.1016/j.dsr2.2014.05.012.

    • Search Google Scholar
    • Export Citation
  • Ballarotta, M., S. Drijfhout, T. Kuhlbrodt, and K. Döös, 2013: The residual circulation of the Southern Ocean: Which spatio-temporal scales are needed? Ocean Modell., 64, 4655, doi:10.1016/j.ocemod.2013.01.005.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., and A. L. Gordon, 1996: Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res., 101, 36753696, doi:10.1029/95JC02750.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., 2013: Divergent eddy heat fluxes in the Kuroshio Extension at 144°–148°E. Part II: Spatiotemporal variability. J. Phys. Oceanogr., 43, 24162431, doi:10.1175/JPO-D-13-061.1.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., H. T. Rossby, and J. L. Lillibridge, 1985: The Gulf Stream—Barrier or blender? J. Phys. Oceanogr., 15, 2432, doi:10.1175/1520-0485(1985)015<0024:TGSOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., P. R. Gent, and R. Tomas, 2014: Can Southern Ocean eddy effects be parameterized in climate models? J. Climate, 27, 411425, doi:10.1175/JCLI-D-12-00759.1.

    • Search Google Scholar
    • Export Citation
  • Chapman, C. C., 2014: Southern Ocean jets and how to find them: Improving and comparing common jet detection methods. J. Geophys. Res. Oceans, 119, 43184339, doi:10.1002/2014JC009810.

    • Search Google Scholar
    • Export Citation
  • Cheon, W. G., Y.-G. Park, J. R. Toggweiler, and S.-K. Lee, 2014: The relationship of Weddell Polynya and open-ocean deep convection to the Southern Hemisphere westerlies. J. Phys. Oceanogr., 44, 694713, doi:10.1175/JPO-D-13-0112.1.

    • Search Google Scholar
    • Export Citation
  • Chidichimo, M. P., K. A. Donohue, D. R. Watts, and K. L. Tracey, 2014: Baroclinic transport time series of the Antarctic Circumpolar Current measured in Drake Passage. J. Phys. Oceanogr., 44, 18291853, doi:10.1175/JPO-D-13-071.1.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108, 8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 High-Resolution Coupled Climate Model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and M. D. Levine, 1981: The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep-Sea Res., 28A, 10571085, doi:10.1016/0198-0149(81)90048-0.

    • Search Google Scholar
    • Export Citation
  • DeVries, T., and F. Primeau, 2011: Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr., 41, 23812401, doi:10.1175/JPO-D-10-05011.1.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. T. Gille, and J. Sprintall, 2007: An assessment of the Southern Ocean mixed layer heat budget. J. Climate, 20, 44254442, doi:10.1175/JCLI4259.1.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., A. Gnanadesikan, S. M. Griffies, and J. L. Sarmiento, 2011: Water mass exchange in the Southern Ocean in coupled climate models. J. Phys. Oceanogr., 41, 17561771, doi:10.1175/2011JPO4586.1.

    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., J. Le Sommer, T. Penduff, B. Barnier, and M. H. England, 2011: Structure and causes of the pulsation mode in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 41, 253268, doi:10.1175/2010JPO4193.1.

    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., J. Le Sommer, J. D. Zika, M. Gehlen, J. C. Orr, P. Mathiot, and B. Barnier, 2012: Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode. J. Climate, 25, 69586974, doi:10.1175/JCLI-D-11-00309.1.

    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., J. L. Sommer, M. Gehlen, J. C. Orr, J.-M. Molines, J. Simeon, and B. Barnier, 2013: Eddy compensation and controls of the enhanced sea-to-air CO2 flux during positive phases of the southern annular mode. Global Biogeochem. Cycles, 27, 950961, doi:10.1002/gbc.20090.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, doi:10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., J. C. McWilliams, V. M. Canuto, and M. Dubovikov, 2008: Parameterization of eddy fluxes near oceanic boundaries. J. Climate, 21, 27702789, doi:10.1175/2007JCLI1510.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and J. Pedlosky, 2003: On the indeterminacy of rotational and divergent eddy fluxes. J. Phys. Oceanogr., 33, 478483, doi:10.1175/1520-0485(2003)033<0478:OTIORA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, doi:10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., A. Gnanadesikan, J. P. Dunne, and M. R. Hiscock, 2010: Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosciences, 7, 10431064, doi:10.5194/bg-7-1043-2010.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., and R. F. Keeling, 2001: On the global oxygen anomaly and air-sea flux. J. Geophys. Res., 106, 31 15531 166, doi:10.1029/1999JC000200.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010a: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. Vol. 3, World Ocean Atlas 2009, NOAA Atlas NESDIS 70, 344 pp.

  • Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010b: Nutrients (Phosphate, Nitrate, Silicate), Vol. 4, World Ocean Atlas 2009, NOAA Atlas NESDIS 71, 398 pp.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 1994: Mean sea surface height of the Antarctic Circumpolar Current from Geosat data: Method and application. J. Geophys. Res., 99, 18 25518 273, doi:10.1029/94JC01172.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V. V., and A. I. Danilov, 1994: Characteristics of warm rings in the African sector of the Antarctic Circumpolar Current. Deep-Sea Res. I, 41, 11311157, doi:10.1016/0967-0637(94)90037-X.

    • Search Google Scholar
    • Export Citation
  • Graham, R. M., A. M. de Boer, K. J. Heywood, M. R. Chapman, and D. P. Stevens, 2012: Southern Ocean fronts: Controlled by wind or topography? J. Geophys. Res., 117, C08018, doi:10.1029/2012JC007887.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, doi:10.1007/s003820000059.

    • Search Google Scholar
    • Export Citation
  • Griesel, A., S. T. Gille, J. Sprintall, J. L. McClean, and M. E. Maltrud, 2009: Assessing eddy heat flux and its parameterization: A wavenumber perspective from a 1/10° ocean simulation. Ocean Modell., 29, 248260, doi:10.1016/j.ocemod.2009.05.004.

    • Search Google Scholar
    • Export Citation
  • Griffies, S., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.

  • Griffies, S., 2012: Elements of the Modular Ocean Model (MOM). NOAA GFDL Ocean Group Tech. Rep. 7, 618 pp. [Available online at http://www.mom-ocean.org/web/docs/project/MOM5_elements.pdf.]

  • Griffies, S., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, doi:10.1175/JCLI-D-14-00353.1.

    • Search Google Scholar
    • Export Citation
  • Gruber, N., and Coauthors, 2009: Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, doi:10.1029/2008GB003349.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, doi:10.1016/j.ocemod.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, doi:10.1175/JPO2980.1.

    • Search Google Scholar
    • Export Citation
  • Hirabara, M., H. Tsujino, H. Nakano, and G. Yamanaka, 2012: Formation mechanism of the Weddell Sea polynya and the impact on the global abyssal ocean. J. Oceanogr., 68, 771796, doi:10.1007/s10872-012-0139-3.

    • Search Google Scholar
    • Export Citation
  • Holte, J. W., L. D. Talley, T. K. Chereskin, and B. M. Sloyan, 2013: Subantarctic mode water in the southeast Pacific: Effect of exchange across the Subantarctic Front. J. Geophys. Res. Oceans, 118, 20522066, doi:10.1002/jgrc.20144.

    • Search Google Scholar
    • Export Citation
  • Ito, T., M. Woloszyn, and M. Mazloff, 2010: Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature, 463, 8083, doi:10.1038/nature08687.

    • Search Google Scholar
    • Export Citation
  • Key, R. M., and Coauthors, 2004: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., F. Primeau, and M. Holzer, 2012: Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet. Sci. Lett., 325–326, 116125, doi:10.1016/j.epsl.2012.01.038.

    • Search Google Scholar
    • Export Citation
  • Kwon, E. Y., S. M. Downes, J. L. Sarmiento, R. Farneti, and C. Deutsch, 2013: Role of the seasonal cycle in the subduction rates of upper Southern Ocean waters. J. Phys. Oceanogr., 43, 10961113, doi:10.1175/JPO-D-12-060.1.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer, 2014: Float-derived isopycnal diffusivities in the DIMES experiment. J. Phys. Oceanogr., 44, 764780, doi:10.1175/JPO-D-13-0175.1.

    • Search Google Scholar
    • Export Citation
  • Langlais, C., S. Rintoul, and A. Schiller, 2011: Variability and mesoscale activity of the Southern Ocean fronts: Identification of a circumpolar coordinate system. Ocean Modell., 39, 7996, doi:10.1016/j.ocemod.2011.04.010.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., and R. G. Williams, 2000: The role of eddies in the isopycnic transfer of nutrients and their impact on biological production. J. Mar. Res., 58, 895917, doi:10.1357/002224000763485746.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., D. P. Marshall, and R. G. Williams, 1997: On the eddy transfer of tracers: Advective or diffusive? J. Mar. Res., 55, 483505, doi:10.1357/0022240973224346.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., A. J. G. Nurser, A. C. Coward, and B. A. de Cuevas, 2007: Eddy advective and diffusive transports of heat and salt in the Southern Ocean. J. Phys. Oceanogr., 37, 13761393, doi:10.1175/JPO3057.1.

    • Search Google Scholar
    • Export Citation
  • Legg, S., R. W. Hallberg, and J. B. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modell., 11, 6997, doi:10.1016/j.ocemod.2004.11.006.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Lozier, M. S., L. J. Pratt, A. M. Rogerson, and P. D. Miller, 1997: Exchange geometry revealed by float trajectories in the Gulf Stream. J. Phys. Oceanogr., 27, 23272341, doi:10.1175/1520-0485(1997)027<2327:EGRBFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, doi:10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., R. Ferrari, and T. Schneider, 2013: The force balance of the Southern Ocean meridional overturning circulation. J. Phys. Oceanogr., 43, 11931208, doi:10.1175/JPO-D-12-069.1.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett., 33, L16608, doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., O. A. Saenko, A. M. Hogg, and P. Spence, 2013: The role of vertical eddy flux in Southern Ocean heat uptake. Geophys. Res. Lett., 40, 54455450, doi:10.1002/2013GL057706.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., T. L. Frölicher, and J. L. Sarmiento, 2015: Upwelling in the Southern Ocean. Phys. Today, 68, 2732, doi:10.1063/PT.3.2654.

    • Search Google Scholar
    • Export Citation
  • Morrow, R., M. L. Ward, A. M. Hogg, and S. Pasquet, 2010: Eddy response to Southern Ocean climate modes. J. Geophys. Res., 115, C10030, doi:10.1029/2009JC005894.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., D. Borowski, C. Völker, and J.-O. Wolff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470, doi:10.1017/S0954102004002251.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., and T. Whitworth III, 2005: Southern Ocean. Vol. 1, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). M. Sparrow, P. Chapman, and J. Gould, Ed., International WOCE Project Office, 223 pp.

  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr ., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, doi:10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Palter, J. B., J. L. Sarmiento, A. Gnanadesikan, J. Simeon, and R. D. Slater, 2010: Fueling export production: Nutrient return pathways from the deep ocean and their dependence on the meridional overturning circulation. Biogeosciences, 7, 35493568, doi:10.5194/bg-7-3549-2010.

    • Search Google Scholar
    • Export Citation
  • Palter, J. B., I. Marinov, J. L. Sarmiento, and N. Gruber, 2013: Large-scale, persistent nutrient fronts of the world ocean: Impacts on biogeochemistry. Chemical Oceanography of Frontal Zones, I. M. Belkin, Ed., Springer-Verlag, 1–38, doi:10.1007/698_2013_241.

  • Peña Molino, B., S. R. Rintoul, and M. R. Mazloff, 2014: Barotropic and baroclinic contributions to along-stream and across-stream transport in the Antarctic Circumpolar Current. J. Geophys. Res. Oceans, 119, 80118028, doi:10.1002/2014JC010020.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and N. L. Bindoff, 2014: On the nonequivalent barotropic structure of the Antarctic Circumpolar Current: An observational perspective. J. Geophys. Res. Oceans, 119, 52215243, doi:10.1002/2013JC009516.

    • Search Google Scholar
    • Export Citation
  • Pollard, R., M. Lucas, and J. Read, 2002: Physical controls on biogeochemical zonation in the Southern Ocean. Deep-Sea Res. II, 49, 32893305, doi:10.1016/S0967-0645(02)00084-X.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and M. H. England, 2002: Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. J. Phys. Oceanogr., 32, 13081321, doi:10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and D. P. Marshall, 2000: On the validity of downgradient eddy closures in ocean models. J. Geophys. Res. Oceans, 105, 28 61328 627, doi:10.1029/1999JC000041.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, and R. Morrow, 2008a: Response of the Antarctic Circumpolar Current to atmospheric variability. J. Climate, 21, 30203039, doi:10.1175/2007JCLI1702.1.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, R. Morrow, and R. Lumpkin, 2008b: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66, 441463, doi:10.1357/002224008787157458.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, Z. Wang, and T. Roy, 2013: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18301844, doi:10.1002/jgrc.20135.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Fluid exchange across a meandering jet. J. Phys. Oceanogr., 22, 431444, doi:10.1175/1520-0485(1992)022<0431:FEAAMJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne, 2004: High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 5660, doi:10.1038/nature02127.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2012: An analytical model of the response of the meridional overturning circulation to changes in wind and buoyancy forcing. J. Phys. Oceanogr., 42, 12701287, doi:10.1175/JPO-D-11-0198.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Marshall, 2009: Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr., 39, 5069, doi:10.1175/2008JPO3880.1.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2007: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37, 13941412, doi:10.1175/JPO3111.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, H., 1971: On the representation of isentropic mixing in ocean circulation models. J. Phys. Oceanogr., 1, 233234, doi:10.1175/1520-0485(1971)001<0233:OTROIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sommeria, J., S. D. Meyers, and H. L. Swinney, 1989: Laboratory model of a planetary eastward jet. Nature, 337, 5861, doi:10.1038/337058a0.

    • Search Google Scholar
    • Export Citation
  • Spence, P., E. van Sebille, O. A. Saenko, and M. H. England, 2014: Using Eulerian and Lagrangian approaches to investigate wind-driven changes in the Southern Ocean abyssal circulation. J. Phys. Oceanogr., 44, 662675, doi:10.1175/JPO-D-13-0108.1.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., I. M. Held, and V. D. Larichev, 1997: Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27, 567580, doi:10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., M. H. England, S. R. Rintoul, G. Madec, J. Le Sommer, and J.-M. Molines, 2007: Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current. Ocean Sci., 3, 491507, doi:10.5194/os-3-491-2007.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., 1983: Monitoring the transport of the Antarctic Circumpolar Current at Drake Passage. J. Phys. Oceanogr., 13, 20452057, doi:10.1175/1520-0485(1983)013<2045:MTTOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., and R. G. Peterson, 1985: Volume transport of the Antarctic Circumpolar Current from bottom pressure measurements. J. Phys. Oceanogr., 15, 810816, doi:10.1175/1520-0485(1985)015<0810:VTOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wiggins, S., 2005: The dynamical systems approach to Lagrangian transport in oceanic flows. Annu. Rev. Fluid Mech., 37, 295328, doi:10.1146/annurev.fluid.37.061903.175815.

    • Search Google Scholar
    • Export Citation
  • Winton, M., R. Hallberg, and A. Gnanadesikan, 1998: Simulation of density-driven frictional downslope flow in z-coordinate ocean models. J. Phys. Oceanogr., 28, 21632174, doi:10.1175/1520-0485(1998)028<2163:SODDFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., and Coauthors, 2013: Vertical eddy fluxes in the Southern Ocean. J. Phys. Oceanogr., 43, 941955, doi:10.1175/JPO-D-12-0178.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2449 870 77
PDF Downloads 1014 291 12