Langmuir Turbulence and Surface Heating in the Ocean Surface Boundary Layer

Brodie C. Pearson University of Reading, Reading, United Kingdom

Search for other papers by Brodie C. Pearson in
Current site
Google Scholar
PubMed
Close
,
Alan L. M. Grant University of Reading, Reading, United Kingdom

Search for other papers by Alan L. M. Grant in
Current site
Google Scholar
PubMed
Close
,
Jeff A. Polton National Oceanography Centre, Liverpool, United Kingdom

Search for other papers by Jeff A. Polton in
Current site
Google Scholar
PubMed
Close
, and
Stephen E. Belcher University of Reading, Reading, United Kingdom

Search for other papers by Stephen E. Belcher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study uses large-eddy simulation to investigate the structure of the ocean surface boundary layer (OSBL) in the presence of Langmuir turbulence and stabilizing surface heat fluxes. The OSBL consists of a weakly stratified layer, despite a surface heat flux, above a stratified thermocline. The weakly stratified (mixed) layer is maintained by a combination of a turbulent heat flux produced by the wave-driven Stokes drift and downgradient turbulent diffusion. The scaling of turbulence statistics, such as dissipation and vertical velocity variance, is only affected by the surface heat flux through changes in the mixed layer depth. Diagnostic models are proposed for the equilibrium boundary layer and mixed layer depths in the presence of surface heating. The models are a function of the initial mixed layer depth before heating is imposed and the Langmuir stability length. In the presence of radiative heating, the models are extended to account for the depth profile of the heating.

Current affiliation: Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island.

Corresponding author address: B. Pearson, Dept. of Earth, Environmental and Planetary Sciences, Brown University, Box 1846, 324 Brook Street, Providence, RI 02912. E-mail: brodie_pearson@brown.edu

Abstract

This study uses large-eddy simulation to investigate the structure of the ocean surface boundary layer (OSBL) in the presence of Langmuir turbulence and stabilizing surface heat fluxes. The OSBL consists of a weakly stratified layer, despite a surface heat flux, above a stratified thermocline. The weakly stratified (mixed) layer is maintained by a combination of a turbulent heat flux produced by the wave-driven Stokes drift and downgradient turbulent diffusion. The scaling of turbulence statistics, such as dissipation and vertical velocity variance, is only affected by the surface heat flux through changes in the mixed layer depth. Diagnostic models are proposed for the equilibrium boundary layer and mixed layer depths in the presence of surface heating. The models are a function of the initial mixed layer depth before heating is imposed and the Langmuir stability length. In the presence of radiative heating, the models are extended to account for the depth profile of the heating.

Current affiliation: Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island.

Corresponding author address: B. Pearson, Dept. of Earth, Environmental and Planetary Sciences, Brown University, Box 1846, 324 Brook Street, Providence, RI 02912. E-mail: brodie_pearson@brown.edu
Save
  • Babanin, A., 2006: On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys. Res. Lett., 33, L20605, doi:10.1029/2006GL027308.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, doi:10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Brainerd, K., and M. Gregg, 1993: Diurnal restratification and turbulence in the oceanic surface mixed-layer. 1. Observations. J. Geophys. Res., 98, 22 645–22 656, doi:10.1029/93JC02297.

    • Search Google Scholar
    • Export Citation
  • Brainerd, K., and M. Gregg, 1995: Surface mixed and mixing layer depths. Deep-Sea Res. I, 42, 1521–1543, doi:10.1016/0967-0637(95)00068-H.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: Rational model for Langmuir circulations. J. Fluid Mech., 73, 401–426, doi:10.1017/S0022112076001420.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101–115, doi:10.1146/annurev-marine-010213-135138.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Theoretical expression for the countergradient vertical heat flux. J. Geophys. Res., 77, 5900–5904, doi:10.1029/JC077i030p05900.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., 1973: A time-dependent model of the upper ocean. J. Phys. Oceanogr., 3, 173–184, doi:10.1175/1520-0485(1973)003<0173:ATDMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garwood, R. W., Jr., 1977: An oceanic mixed layer model capable of simulating cyclic states. J. Phys. Oceanogr., 7, 455–468, doi:10.1175/1520-0485(1977)007<0455:AOMLMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 1871–1887, doi:10.1175/2009JPO4119.1.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2011: Wind-driven mixing below the oceanic mixed layer. J. Phys. Oceanogr., 41, 1556–1575, doi:10.1175/JPO-D-10-05020.1.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 1542–1562, doi:10.1175/2007JPO3842.1.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and C.-H. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 1690–1698, doi:10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, and P. P. Sullivan, 2013: Inhibited upper ocean restratification in nonequilibrium swell conditions. Geophys. Res. Lett., 40, 3672–3676, doi:10.1002/grl.50708.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259–278, doi:10.1016/j.dsr.2004.09.004.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 1–30, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • Min, H., and Y. Noh, 2004: Influence of the surface heating on Langmuir circulation. J. Phys. Oceanogr., 34, 2630–2641, doi:10.1175/JPOJPO-2654.1.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163–187.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F., and R. Brost, 1986: The decay of convective turbulence. J. Atmos. Sci., 43, 532–546, doi:10.1175/1520-0469(1986)043<0532:TDOCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720–735, doi:10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., G. Goh, S. Raasch, and M. Gryschka, 2009: Formation of a diurnal thermocline in the ocean mixed layer simulated by LES. J. Phys. Oceanogr., 39, 1244–1257, doi:10.1175/2008JPO4032.1.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952–956, doi:10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pino, D., H. J. Jonker, J. V.-G. De Arellano, and A. Dosio, 2006: Role of shear and the inversion strength during sunset turbulence over land: Characteristic length scales. Bound.-Layer Meteor., 121, 537–556, doi:10.1007/s10546-006-9080-6.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., and R. A. Weller, 1999: Structure and evolution of the oceanic surface boundary layer during the surface waves processes program. J. Mar. Syst., 21, 85–102, doi:10.1016/S0924-7963(99)00007-X.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, doi:10.1029/2007JC004205.

    • Search Google Scholar
    • Export Citation
  • Price, J., R. Weller, and R. Pinkel, 1986: Diurnal cycling - Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411–8427, doi:10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., and R. B. Montgomery, 1935: The layer of frictional influence in wind and ocean currents. Papers in Physical Oceanography and Meteorology, Vol. 3, No. 3, 101 pp., doi:10.1575/1912/1157.

  • Shutts, G. J., and M. E. B. Gray, 1994: A numerical modelling study of the geostrophic adjustment process following deep convection. Quart. J. Roy. Meteor. Soc., 120, 1145–1178, doi:10.1002/qj.49712051903.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E., and D. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 8501–8522, doi:10.1029/94JC03202.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. G., 1847: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8, 441–463.

  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405–452, doi:10.1017/S002211200700897X.

    • Search Google Scholar
    • Export Citation
  • Sutherland, G., B. Ward, and K. Christensen, 2013: Wave-turbulence scaling in the ocean mixed layer. Ocean Sci., 9, 597–608, doi:10.5194/os-9-597-2013.

    • Search Google Scholar
    • Export Citation
  • Sutherland, G., K. Christensen, and B. Ward, 2014: Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer. J. Geophys. Res., 119, 1899–1910, doi:10.1002/2013JC009537.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and S. E. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech., 458, 229–267, doi:10.1017/S0022112002007838.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and S. E. Belcher, 2010: On the structure of langmuir turbulence. Ocean Modell., 31, 105–119, doi:10.1016/j.ocemod.2009.10.007.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1972: On the determination of the height of the Ekman boundary layer. Bound.-Layer Meteor., 3, 141–145, doi:10.1007/BF02033914.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., and A. Baklanov, 2002: Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteor., 105, 389–409, doi:10.1023/A:1020376832738.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., A. Baklanov, J. Rost, A.-S. Smedman, V. Lykosov, and P. Calanca, 2002: Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Quart. J. Roy. Meteor. Soc., 128, 25–46, doi:10.1256/00359000260498770.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 469 171 16
PDF Downloads 365 112 7