Simulations of Internal Solitary Wave Interactions with Mesoscale Eddies in the Northeastern South China Sea

Jieshuo Xie State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jieshuo Xie in
Current site
Google Scholar
PubMed
Close
,
Yinghui He State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Yinghui He in
Current site
Google Scholar
PubMed
Close
,
Zhiwu Chen State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Zhiwu Chen in
Current site
Google Scholar
PubMed
Close
,
Jiexin Xu State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Jiexin Xu in
Current site
Google Scholar
PubMed
Close
, and
Shuqun Cai State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Shuqun Cai in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

With the combined analysis of synthetic aperture radar image and satellite altimeter data collected in the northeastern South China Sea (SCS), this study found one type of distorted phenomenon of internal solitary wave (ISW) with the long front caused by the oceanic mesoscale eddy. Motivated by these satellite observations, the authors carried out numerical experiments using the fully nonhydrostatic and nonlinear MITgcm to investigate the perturbation of ISWs by an isolated cyclonic or anticyclonic eddy. The results show that the ISW front is distorted by these oceanic eddies due to the retardation and acceleration effects at their two sides. The ISW energy along the front is focused onto (scattered from) the wave fragment where a concave (convex) pattern is formed, and the previously accumulated energy in the focusing region is gradually released after the ISW propagates away from the eddies. The ISW amplitude is modulated greatly by the eddies due to the energy redistribution along the front. Sensitivity results indicate that the magnitude of the modulated ISW amplitude in the focusing region can reach twice the incident ISW amplitude, while in the scattering region it can be reduced by more than a half. These results therefore suggest that models with eddies included, especially the energetic eddies, could further improve the amplitude predictions in the northeastern SCS. Additionally, the internal gravity wave formed behind the energy-focusing region by the anticyclonic eddies can steepen and break with the consequent formation of a secondary trailing ISW packet. Finally, this study shows that the model results of the distorted front and trailing packet are in qualitative agreement with that of the satellite observations in the northeastern SCS.

Corresponding author address: Shuqun Cai, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China. E-mail: caisq@scsio.ac.cn

Abstract

With the combined analysis of synthetic aperture radar image and satellite altimeter data collected in the northeastern South China Sea (SCS), this study found one type of distorted phenomenon of internal solitary wave (ISW) with the long front caused by the oceanic mesoscale eddy. Motivated by these satellite observations, the authors carried out numerical experiments using the fully nonhydrostatic and nonlinear MITgcm to investigate the perturbation of ISWs by an isolated cyclonic or anticyclonic eddy. The results show that the ISW front is distorted by these oceanic eddies due to the retardation and acceleration effects at their two sides. The ISW energy along the front is focused onto (scattered from) the wave fragment where a concave (convex) pattern is formed, and the previously accumulated energy in the focusing region is gradually released after the ISW propagates away from the eddies. The ISW amplitude is modulated greatly by the eddies due to the energy redistribution along the front. Sensitivity results indicate that the magnitude of the modulated ISW amplitude in the focusing region can reach twice the incident ISW amplitude, while in the scattering region it can be reduced by more than a half. These results therefore suggest that models with eddies included, especially the energetic eddies, could further improve the amplitude predictions in the northeastern SCS. Additionally, the internal gravity wave formed behind the energy-focusing region by the anticyclonic eddies can steepen and break with the consequent formation of a secondary trailing ISW packet. Finally, this study shows that the model results of the distorted front and trailing packet are in qualitative agreement with that of the satellite observations in the northeastern SCS.

Corresponding author address: Shuqun Cai, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China. E-mail: caisq@scsio.ac.cn
Save
  • Alford, M. H., R. C. Lien, H. Simmons, J. Klymak, S. Ramp, Y. J. Yang, D. Tang, and M. H. Chang, 2010: Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40, 13381355, doi:10.1175/2010JPO4388.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 6569, doi:10.1038/nature14399.

    • Search Google Scholar
    • Export Citation
  • Apel, J. R., L. A. Ostrovsky, Y. A. Stepanyants, and J. F. Lynch, 2006: Internal solitons in the ocean. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2006-04, 109 pp.

  • Buijsman, M. C., J. C. McWilliams, and C. R. Jackson, 2010: East-west asymmetry in nonlinear internal waves from Luzon Strait. J. Geophys. Res., 115, C10057, doi:10.1029/2009JC006004.

    • Search Google Scholar
    • Export Citation
  • Cai, S., and J. Xie, 2010: A propagation model for the internal solitary waves in the northern South China Sea. J. Geophys. Res., 115, C12074, doi:10.1029/2010JC006341.

    • Search Google Scholar
    • Export Citation
  • Cai, S., X. Long, R. Wu, and S. Wang, 2008: Geographical and monthly variability of the first baroclinic Rossby radius of deformation in the South China Sea. J. Mar. Syst., 74, 711720, doi:10.1016/j.jmarsys.2007.12.008.

    • Search Google Scholar
    • Export Citation
  • Carton, X. J., 2001: Hydrodynamical modeling of oceanic vortices. Surv. Geophys., 22, 179263, doi:10.1023/A:1013779219578.

  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Hou, and X. Chu, 2011: Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116, C06018, doi:10.1029/2010JC006716.

    • Search Google Scholar
    • Export Citation
  • Chen, G.-Y., C.-T. Liu, Y.-H. Wang, and M.-K. Hsu, 2011: Interaction and generation of long-crested internal solitary waves in the South China Sea. J. Geophys. Res., 116, C06013, doi:10.1029/2010JC006392.

    • Search Google Scholar
    • Export Citation
  • Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. Ramp, C.-S. Chiu, T.-Y. Tang, and Y.-J. Yang, 2004: Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE J. Oceanic Eng., 29, 11051130, doi:10.1109/JOE.2004.836998.

    • Search Google Scholar
    • Export Citation
  • Dunphy, M., and K. G. Lamb, 2014: Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans, 119, 523536, doi:10.1002/2013JC009293.

    • Search Google Scholar
    • Export Citation
  • Farmer, D., Q. Li, and J.-H. Park, 2009: Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmos.–Ocean, 47, 267280, doi:10.3137/OC313.2009.

    • Search Google Scholar
    • Export Citation
  • Fett, R. W., and K. Rabe, 1977: Satellite observation of internal wave refraction in the South China Sea. Geophys. Res. Lett., 4, 189191, doi:10.1029/GL004i005p00189.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., 1985: Evolution equations for weakly nonlinear, long internal waves in rotating fluid. Stud. Appl. Math., 73, 133, doi:10.1002/sapm19857311.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., E. Pelinovsky, T. Talipova, and A. Kurkin, 2004: Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr., 34, 27742779, doi:10.1175/JPO2652.1.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., K. Helfrich, and E. Johnson, 2012: The reduced Ostrovsky equation: Integrability and breaking. Stud. Appl. Math., 129, 414436, doi:10.1111/j.1467-9590.2012.00560.x.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., C. Guo, K. Helfrich, and V. Vlasenko, 2014: Combined effect of rotation and topography on shoaling oceanic internal solitary waves. J. Phys. Oceanogr., 44, 11161132, doi:10.1175/JPO-D-13-0194.1.

    • Search Google Scholar
    • Export Citation
  • Guo, C., and X. Chen, 2014: A review of internal solitary wave dynamics in the northern South China Sea. Prog. Oceanogr., 121, 723, doi:10.1016/j.pocean.2013.04.002.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. R., 2004: An Atlas of Internal Solitary–Like Waves and Their Properties. 2nd ed. Global Ocean Associates, 560 pp.

  • Kunze, E., 1985: Near-inertial wave-propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2008: On the calculation of the available potential energy of an isolated perturbation in a density stratified fluid. J. Fluid Mech., 597, 415427, doi:10.1017/S0022112007009743.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2014: Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech., 46, 231254, doi:10.1146/annurev-fluid-011212-140701.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., and D. Farmer, 2011: Instabilities in an internal solitary-like wave on the Oregon shelf. J. Phys. Oceanogr., 41, 6787, doi:10.1175/2010JPO4308.1.

    • Search Google Scholar
    • Export Citation
  • LeBlond, P., and L. Mysak, 1978: Waves in the Ocean. Elsevier Oceanography Series, Vol. 20, Elsevier, 602 pp.

  • Li, Q., and D. Farmer, 2011: The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. J. Phys. Oceanogr., 41, 13451363, doi:10.1175/2011JPO4587.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., C. R. Jackson, and W. G. Pichel, 2013: Internal solitary wave refraction at Dongsha Atoll, South China Sea. Geophys. Res. Lett., 40, 31283132, doi:10.1002/grl.50614.

    • Search Google Scholar
    • Export Citation
  • Lien, R. C., E. A. D’Asaro, F. Henyey, M. H. Chang, T. Y. Tang, and Y. J. Yang, 2012: Trapped core formation within a shoaling nonlinear internal wave. J. Phys. Oceanogr., 42, 511525, doi:10.1175/2011JPO4578.1.

    • Search Google Scholar
    • Export Citation
  • Liu, A. K., Y. Zhao, T. Y. Tang, and S. R. Ramp, 2004: A case study of internal wave propagation during ASIAEX-2001. IEEE J. Oceanic Eng., 29, 11441156, doi:10.1109/JOE.2004.841392.

    • Search Google Scholar
    • Export Citation
  • Liu, B., H. Yang, Z. Zhao, and X. Li, 2014: Internal solitary wave propagation observed by tandem satellites. Geophys. Res. Lett., 41, 20772085, doi:10.1002/2014GL059281.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, doi:10.1029/RG023i002p00165.

  • Nan, F., Z. He, H. Zhou, and D. Wang, 2011: Three long-lived anticyclonic eddies in the northern South China Sea. J. Geophys. Res., 116, C05002, doi:10.1029/2010JC006790.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251269, doi:10.1016/0021-9991(76)90023-1.

    • Search Google Scholar
    • Export Citation
  • Pan, J., D. A. Jay, and P. M. Orton, 2007: Analyses of internal solitary waves generated at the Columbia River plume front using SAR imagery. J. Geophys. Res., 112, C07014, doi:10.1029/2006JC003688.

    • Search Google Scholar
    • Export Citation
  • Park, J.-H., and D. Farmer, 2013: Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter. J. Geophys. Res. Oceans, 118, 70817094, doi:10.1002/2013JC008983.

    • Search Google Scholar
    • Export Citation
  • Pickering, A., M. Alford, J. Nash, L. Rainville, M. Buijsman, D. Ko, and B. Lim, 2015: Structure and variability of internal tides in Luzon Strait. J. Phys. Oceanogr., 45, 15741594, doi:10.1175/JPO-D-14-0250.1.

    • Search Google Scholar
    • Export Citation
  • Pierini, S., 1989: A model for the Alboran Sea internal solitary waves. J. Phys. Oceanogr., 19, 755772, doi:10.1175/1520-0485(1989)019<0755:AMFTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, H., M.-H. Chang, Y.-T. Chang, S.-Y. Chao, O. Fringer, C. Jackson, and D. Ko, 2011: Modeling and prediction of internal waves in the South China Sea. Oceanography, 24, 8899, doi:10.5670/oceanog.2011.97.

    • Search Google Scholar
    • Export Citation
  • Small, J., 2001: A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean. Part II: Oblique refraction across a continental slope and propagation over seamount. J. Phys. Oceanogr., 31, 31843199, doi:10.1175/1520-0485(2001)031<3184:ANMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vitousek, S., and O. B. Fringer, 2011: Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modell., 40, 7286, doi:10.1016/j.ocemod.2011.07.002.

    • Search Google Scholar
    • Export Citation
  • Vitousek, S., and O. B. Fringer, 2014: A nonhydrostatic, isopycnal-coordinate ocean model for internal waves. Ocean Modell., 83, 118144, doi:10.1016/j.ocemod.2014.08.008.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., and N. Stashchuk, 2007: Three-dimensional shoaling of large-amplitude internal waves. J. Geophys. Res., 112, C11018, doi:10.1029/2007JC004107.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., N. Stashchuk, and K. Hutter, 2005: Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press, 351 pp.

  • Zhang, Z., O. B. Fringer, and S. R. Ramp, 2011: Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J. Geophys. Res., 116, C05022, doi:10.1029/2010JC006424.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., V. Klemas, Q. Zheng, and X.-H. Yan, 2004: Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31, L06302, doi:10.1029/2003GL019077.

    • Search Google Scholar
    • Export Citation
  • Zheng, Q., R. D. Susanto, C.-R. Ho, Y. Song, and Q. Xu, 2007: Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. J. Geophys. Res., 112, C03021, doi:10.1029/2006JC003551.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 833 380 34
PDF Downloads 1040 156 14