Planetary–Geometric Constraints on Isopycnal Slope in the Southern Ocean

Daniel C. Jones British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom, and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Daniel C. Jones in
Current site
Google Scholar
PubMed
Close
,
Takamitsu Ito School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Takamitsu Ito in
Current site
Google Scholar
PubMed
Close
,
Thomas Birner Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Thomas Birner in
Current site
Google Scholar
PubMed
Close
,
Andreas Klocker Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia

Search for other papers by Andreas Klocker in
Current site
Google Scholar
PubMed
Close
, and
David Munday British Antarctic Survey, Natural Environment Research Council, Cambridge, and Department of Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by David Munday in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On planetary scales, surface wind stress and differential buoyancy forcing act together to produce isopycnal surfaces that are relatively flat in the tropics/subtropics and steep near the poles, where they tend to outcrop. Tilted isopycnals in a rapidly rotating fluid are subject to baroclinic instability. The turbulent, mesoscale eddies generated by this instability have a tendency to homogenize potential vorticity (PV) along density surfaces. In the Southern Ocean (SO), the tilt of isopycnals is largely maintained by competition between the steepening effect of surface forcing and the flattening effect of turbulent, spatially inhomogeneous eddy fluxes of PV. Here quasigeostrophic theory is used to investigate the influence of a planetary–geometric constraint on the equilibrium slope of tilted density/buoyancy surfaces in the SO. If the meridional gradients of relative vorticity and PV are small relative to β, then quasigeostrophic theory predicts ds/dz = β/f0 = cot(ϕ0)/a, or equivalently r ≡ |∂zs/(β/f0)| = 1, where f is the Coriolis parameter, β is the meridional gradient of f, s is the isopycnal slope, ϕ0 is a reference latitude, a is the planetary radius, and r is the depth-averaged criticality parameter. It is found that the strict r = 1 condition holds over specific averaging volumes in a large-scale climatology. A weaker r = O(1) condition for depth-averaged quantities is generally satisfied away from large bathymetric features. The r = O(1) constraint is employed to derive a depth scale to characterize large-scale interior stratification, and an idealized sector model is used to test the sensitivity of this relationship to surface wind forcing. Finally, the possible implications for eddy flux parameterization and for the sensitivity of SO circulation/stratification to changes in forcing are discussed.

Corresponding author address: Dan Jones, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: dannes@bas.ac.uk

Abstract

On planetary scales, surface wind stress and differential buoyancy forcing act together to produce isopycnal surfaces that are relatively flat in the tropics/subtropics and steep near the poles, where they tend to outcrop. Tilted isopycnals in a rapidly rotating fluid are subject to baroclinic instability. The turbulent, mesoscale eddies generated by this instability have a tendency to homogenize potential vorticity (PV) along density surfaces. In the Southern Ocean (SO), the tilt of isopycnals is largely maintained by competition between the steepening effect of surface forcing and the flattening effect of turbulent, spatially inhomogeneous eddy fluxes of PV. Here quasigeostrophic theory is used to investigate the influence of a planetary–geometric constraint on the equilibrium slope of tilted density/buoyancy surfaces in the SO. If the meridional gradients of relative vorticity and PV are small relative to β, then quasigeostrophic theory predicts ds/dz = β/f0 = cot(ϕ0)/a, or equivalently r ≡ |∂zs/(β/f0)| = 1, where f is the Coriolis parameter, β is the meridional gradient of f, s is the isopycnal slope, ϕ0 is a reference latitude, a is the planetary radius, and r is the depth-averaged criticality parameter. It is found that the strict r = 1 condition holds over specific averaging volumes in a large-scale climatology. A weaker r = O(1) condition for depth-averaged quantities is generally satisfied away from large bathymetric features. The r = O(1) constraint is employed to derive a depth scale to characterize large-scale interior stratification, and an idealized sector model is used to test the sensitivity of this relationship to surface wind forcing. Finally, the possible implications for eddy flux parameterization and for the sensitivity of SO circulation/stratification to changes in forcing are discussed.

Corresponding author address: Dan Jones, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: dannes@bas.ac.uk
Save
  • Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278, doi:10.1175/JPO-D-11-023.1.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., D. Ferreira, and A. Klocker, 2013: Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modell., 72, 116, doi:10.1016/j.ocemod.2013.07.004.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F., 1966: Baroclinic instability and the short wavelength cutoff in terms of potential vorticity. Quart. J. Roy. Meteor. Soc., 92, 335345, doi:10.1002/qj.49709239303.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., T. L. Delworth, A. J. Rosati, S. M. Griffies, and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557, doi:10.1175/2010JPO4353.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910, doi:10.1175/JPO2785.1.

    • Search Google Scholar
    • Export Citation
  • Forget, G., 2010: Mapping ocean observations in a dynamical framework: A 2004–06 ocean atlas. J. Phys. Oceanogr., 40, 12011221, doi:10.1175/2009JPO4043.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the modeling eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, doi:10.1175/JPO2980.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946952, doi:10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogg, A., and D. Munday, 2014: Does the sensitivity of Southern Ocean circulation depend upon bathymetric details? Philos.Trans. Roy. Soc. London, 372A, 2019, doi:10.1098/rsta.2013.0050.

    • Search Google Scholar
    • Export Citation
  • Hughes, C., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110, C11008, doi:10.1029/2004JC002753.

    • Search Google Scholar
    • Export Citation
  • Hughes, C., and B. D. Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 28712885, doi:10.1175/1520-0485(2001)031<2871:WWBCIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackett, D., and T. Mcdougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, doi:10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., and R. Ferrari, 2012: Macroturbulent equilibration in a thermally forced primitive equation system. J. Atmos. Sci., 69, 695713, doi:10.1175/JAS-D-11-041.1.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32, 33153327, doi:10.1175/1520-0485(2002)032<3315:CTRCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, doi:10.1175/JPO-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Lovenduski, N., and T. Ito, 2009: The future evolution of the Southern Ocean CO2 sink. J. Mar. Res., 67, 597617, doi:10.1357/002224009791218832.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Olbers, H. Ross, and D. Wolf-Gladrow, 1993: Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean. J. Phys. Oceanogr., 23, 465487, doi:10.1175/1520-0485(1993)023<0465:PVCOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, and L. Perelman, 1997a: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, doi:10.1175/2009JPO4236.1.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, doi:10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2014: Impacts and effects of mesoscale ocean eddies on ocean carbon storage and atmospheric pCO2. Global Biogeochem. Cycles, 28, 877896, doi:10.1002/2014GB004836.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3A, 5355, doi:10.1111/j.2153-3490.1951.tb00776.x.

    • Search Google Scholar
    • Export Citation
  • Russell, J., K. Dixon, A. Gnanadesikan, R. Stouffer, and J. Toggweiler, 2006: The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Climate, 19, 63826390, doi:10.1175/JCLI3984.1.

    • Search Google Scholar
    • Export Citation
  • Sallée, J., K. Speer, and R. Morrow, 2008: Response of the Antarctic Circumpolar Current to atmospheric variability. J. Climate, 21, 30203039, doi:10.1175/2007JCLI1702.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K., and J. Marshall, 2009: Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr., 39, 5069, doi:10.1175/2008JPO3880.1.

    • Search Google Scholar
    • Export Citation
  • Stone, P., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561571, doi:10.1175/1520-0469(1978)035<0561:BA>2.0.CO;2.

  • Takahashi, T., and Coauthors, 2009: Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res. II, 56, 554577, doi:10.1016/j.dsr2.2008.12.009.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, doi:10.1175/2011JPO4404.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 769 pp.

  • Viebahn, J., and C. Eden, 2010: Towards the impact of eddies on the response of the Southern Ocean to climate change. Ocean Modell., 34, 150165, doi:10.1016/j.ocemod.2010.05.005.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, and T. Haine, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 431 133 8
PDF Downloads 285 94 4