Symmetric and Geostrophic Instabilities in the Wave-Forced Ocean Mixed Layer

Sean Haney Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, and CIRES, Boulder, Colorado

Search for other papers by Sean Haney in
Current site
Google Scholar
PubMed
Close
,
Baylor Fox-Kemper Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Baylor Fox-Kemper in
Current site
Google Scholar
PubMed
Close
,
Keith Julien Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Keith Julien in
Current site
Google Scholar
PubMed
Close
, and
Adrean Webb Department of Ocean Technology, Policy, and Environment, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Adrean Webb in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Here, the effects of surface waves on submesoscale instabilities are studied through analytical and linear analyses as well as nonlinear large-eddy simulations of the wave-averaged Boussinesq equations. The wave averaging yields a surface-intensified current (Stokes drift) that advects momentum, adds to the total Coriolis force, and induces a Stokes shear force. The Stokes–Coriolis force alters the geostrophically balanced flow by reducing the burden on the Eulerian–Coriolis force to prop up the front, thereby potentially inciting an anti-Stokes Eulerian shear, while maintaining the Lagrangian (Eulerian plus Stokes) shear. Since the Lagrangian shear is maintained, the Charney–Stern–Pedlosky criteria for quasigeostrophic (QG) baroclinic instability are unchanged with the appropriate Lagrangian interpretation of the shear and QG potential vorticity. While the Stokes drift does not directly affect vorticity, the anti-Stokes Eulerian shear contributes to the Ertel potential vorticity (PV). When the Stokes shear and geostrophic shear are aligned (antialigned), the PV is more (less) cyclonic. If the Stokes-modified PV is anticyclonic, the flow is unstable to symmetric instabilities (SI). Stokes drift also weakly impacts SI through the Stokes shear force. When the Stokes and Eulerian shears are the same (opposite) sign, the Stokes shear force does positive (negative) work on the flow associated with SI. Stokes drift also allows SI to extract more potential energy from the front, providing an indirect mechanism for Stokes-induced restratification.

Corresponding author address: Sean Haney, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0213, La Jolla, CA 92093-0213. E-mail: shaney@ucsd.edu

This article is included in the Ocean Turbulence Special Collection.

Abstract

Here, the effects of surface waves on submesoscale instabilities are studied through analytical and linear analyses as well as nonlinear large-eddy simulations of the wave-averaged Boussinesq equations. The wave averaging yields a surface-intensified current (Stokes drift) that advects momentum, adds to the total Coriolis force, and induces a Stokes shear force. The Stokes–Coriolis force alters the geostrophically balanced flow by reducing the burden on the Eulerian–Coriolis force to prop up the front, thereby potentially inciting an anti-Stokes Eulerian shear, while maintaining the Lagrangian (Eulerian plus Stokes) shear. Since the Lagrangian shear is maintained, the Charney–Stern–Pedlosky criteria for quasigeostrophic (QG) baroclinic instability are unchanged with the appropriate Lagrangian interpretation of the shear and QG potential vorticity. While the Stokes drift does not directly affect vorticity, the anti-Stokes Eulerian shear contributes to the Ertel potential vorticity (PV). When the Stokes shear and geostrophic shear are aligned (antialigned), the PV is more (less) cyclonic. If the Stokes-modified PV is anticyclonic, the flow is unstable to symmetric instabilities (SI). Stokes drift also weakly impacts SI through the Stokes shear force. When the Stokes and Eulerian shears are the same (opposite) sign, the Stokes shear force does positive (negative) work on the flow associated with SI. Stokes drift also allows SI to extract more potential energy from the front, providing an indirect mechanism for Stokes-induced restratification.

Corresponding author address: Sean Haney, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0213, La Jolla, CA 92093-0213. E-mail: shaney@ucsd.edu

This article is included in the Ocean Turbulence Special Collection.

Save
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 2001: Chebyshev and Fourier Spectral Methods. 2nd ed. Dover, 668 pp.

  • Broström, G., K. H. Christensen, M. Drivdal, and J. E. H. Weber, 2014: Note on Coriolis-Stokes force and energy. Ocean Dyn., 64, 10391045, doi:10.1007/s10236-014-0723-8.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current system. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, doi:10.1175/2008JPO3810.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J., and M. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, doi:10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craik, A., 1977: The generation of Langmuir circulations by an instability mechanism. J. Fluid Mech., 81, 209223, doi:10.1017/S0022112077001980.

    • Search Google Scholar
    • Export Citation
  • Craik, A., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, doi:10.1017/S0022112076001420.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • Eady, E., 1949: Long waves and cyclone waves. Tellus, 1A, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Fan, Y., and S. M. Griffies, 2014: Impacts of parameterized Langmuir turbulence and nonbreaking wave mixing in global climate simulations. J. Climate, 27, 47524775, doi:10.1175/JCLI-D-13-00583.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, doi:10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and R. A. Weller, 1995: Structure and instability of the Ekman spiral in the presence of surface gravity waves. J. Phys. Oceanogr., 25, 31483171, doi:10.1175/1520-0485(1995)025<3148:SAIOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, doi:10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir–submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, doi:10.1175/JPO-D-13-0139.1.

    • Search Google Scholar
    • Export Citation
  • Haney, S., 2015: Mixing and restratification in the upper ocean: Competing mechanisms in the wave-averaged Boussinesq equations. Ph.D. dissertation, University of Colorado, Boulder, 170 pp.

  • Holm, D. D., 1996: The ideal Craik-Leibovich equations. Physica D, 98, 415441, doi:10.1016/0167-2789(96)00105-4.

  • Hoskins, B., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, doi:10.1002/qj.49710042520.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., 1979: On surface drift currents in the ocean. J. Fluid Mech., 91, 191208, doi:10.1017/S0022112079000112.

  • Large, W., and S. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., and S. Paolucci, 1981: The instability of the ocean to Langmuir circulations. J. Fluid Mech., 102, 141167, doi:10.1017/S0022112081002589.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, doi:10.1146/annurev-marine-120709-142745.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., M. R. Fewings, P. Howd, J. Fredericks, and K. Hathaway, 2008: Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr., 38, 23412357, doi:10.1175/2008JPO3986.1.

    • Search Google Scholar
    • Export Citation
  • Li, K., Z. Zhang, G. Chini, and G. Flierl, 2012: Langmuir circulation: An agent for vertical restratification? J. Phys. Oceanogr., 42, 19451958, doi:10.1175/JPO-D-11-0225.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein, 2015: Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modell., doi:10.1016/j.ocemod.2015.07.020, in press.

  • Mahadevan, A., E. D. Asaro, C. Lee, and M. J. Perry, 2012: Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science, 337, 5458, doi:10.1126/science.1218740.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: A uniformly valid model spanning the regimes of geostrophic and isotropic, stratified turbulence: Balanced turbulence. J. Atmos. Sci., 42, 17731774, doi:10.1175/1520-0469(1985)042<1773:AUVMST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, doi:10.1016/S1353-2561(01)00041-X.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and B. Fox-Kemper, 2013: Oceanic wave-balanced surface fronts and filaments. J. Fluid Mech., 730, 464490, doi:10.1017/jfm.2013.348.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. R. Restrepo, and E. M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech., 511, 135178, doi:10.1017/S0022112004009358.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, doi:10.1175/JPO-D-12-07.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870890, doi:10.1175/JPO-D-13-0122.1.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1988: Scale selection of baroclinic instability—Effects of stratification and nongeostrophy. J. Atmos. Sci., 45, 32533268, doi:10.1175/1520-0469(1988)045<3253:SSOBIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1964: The stability of currents in the atmosphere and the ocean: Part I. J. Atmos. Sci., 21, 201219, doi:10.1175/1520-0469(1964)021<0201:TSOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1982: Geophysical Fluid Dynamics. Springer-Verlag, 636 pp.

  • Polton, J. A., D. M. Lewis, and S. E. Belcher, 2005: The role of wave-induced Coriolis–Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35, 444457, doi:10.1175/JPO2701.1.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., E. D. Skyllingstad, G. B. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes and stokes drift effects in the K-profile parameterization. Ocean Dyn., 52, 104115, doi:10.1007/s10236-002-0012-9.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1970: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci., 27, 721726, doi:10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1971: Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech., 45, 659671, doi:10.1017/S0022112071000260.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary-layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, doi:10.1175/JAS-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1994: Mixed layer restratification due to a horizontal density gradient. J. Phys. Oceanogr., 24, 14191424, doi:10.1175/1520-0485(1994)024<1419:MLRDTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2011: Ocean fronts trigger high latitude phytoplankton blooms. Geophys. Res. Lett., 38, L23601, doi:10.1029/2011GL049312.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466, doi:10.1175/JPO2830.1.

  • Thomas, L. N., and J. R. Taylor, 2010: Reduction of the usable wind-work on the general circulation by forced symmetric instability. Geophys. Res. Lett., 37, L18606, doi:10.1029/2010GL044680.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, doi:10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., E. D’Asaro, M. Cronin, W. Rogers, R. Harcourt, and A. Shcherbina, 2013: Waves and the equilibrium range at Ocean Weather Station P. J. Geophys. Res. Oceans, 118, 59515962, doi:10.1002/2013JC008837.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH IIITM version 3.14. NCEP Tech. Note, MMAB Contribution 276, 220 pp.

  • Ursell, F., and G. Deacon, 1950: On the theoretical form of ocean swell. On a rotating Earth. Geophys. J. Int., 6, 18, doi:10.1111/j.1365-246X.1950.tb02968.x.

    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 1993: The Kelvin-Helmholtz instability in a non-geostrophic baroclinic unstable flow. Math. Comput. Modell., 17, 149154, doi:10.1016/0895-7177(93)90099-K.

    • Search Google Scholar
    • Export Citation
  • Van Roekel, L., B. Fox-Kemper, P. Sullivan, P. Hamlington, and S. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, doi:10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
  • Webb, A., and B. Fox-Kemper, 2011: Wave spectral moments and Stokes drift estimation. Ocean Modell., 40, 273288, doi:10.1016/j.ocemod.2011.08.007.

    • Search Google Scholar
    • Export Citation
  • Webb, A., and B. Fox-Kemper, 2015: Impacts of wave spreading and multidirectional waves on estimating Stokes drift. Ocean Modell., in press, doi:10.1016/j.ocemod.2014.12.007.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 971 415 16
PDF Downloads 374 104 11