Large-Scale Dynamics of Circulations with Open-Ocean Convection

Fabian Schloesser Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Fabian Schloesser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Formation of the densest water masses in the North Atlantic and its marginal seas involves open-ocean convection. The main goal of this study is to contribute to the general understanding of how such convective regions connect to the large-scale ocean circulation. Specifically, analytic and numerical versions of a variable density layer model are used to explore the processes underlying the circulation in an idealized ocean basin. The models are forced by a surface buoyancy flux, which generates a density maximum in the ocean interior. In response to the forcing, a region forms that is characterized by the closed Rossby wave characteristics and where the eddy–mean transport converges toward the convective site. Outside of that region, characteristics extend from the eastern boundary and a distorted β-plume circulation develops, linking the convection site with the western boundary. The overturning strength in the model can be related to several environment variables and forcings and is constrained by the surface density field, stratification, eddy mixing strength and by Rossby wave dynamics. Solutions forced by an interior ocean density minimum are also considered. Although no convection occurs, the dynamics underlying the circulation are closely related to the case with cooling.

Corresponding author address: Fabian Schloesser, Graduate School of Oceanography, University of Rhode Island, 215 S. Ferry Rd., Narragansett, RI 02882. E-mail: schloess@uri.edu

Abstract

Formation of the densest water masses in the North Atlantic and its marginal seas involves open-ocean convection. The main goal of this study is to contribute to the general understanding of how such convective regions connect to the large-scale ocean circulation. Specifically, analytic and numerical versions of a variable density layer model are used to explore the processes underlying the circulation in an idealized ocean basin. The models are forced by a surface buoyancy flux, which generates a density maximum in the ocean interior. In response to the forcing, a region forms that is characterized by the closed Rossby wave characteristics and where the eddy–mean transport converges toward the convective site. Outside of that region, characteristics extend from the eastern boundary and a distorted β-plume circulation develops, linking the convection site with the western boundary. The overturning strength in the model can be related to several environment variables and forcings and is constrained by the surface density field, stratification, eddy mixing strength and by Rossby wave dynamics. Solutions forced by an interior ocean density minimum are also considered. Although no convection occurs, the dynamics underlying the circulation are closely related to the case with cooling.

Corresponding author address: Fabian Schloesser, Graduate School of Oceanography, University of Rhode Island, 215 S. Ferry Rd., Narragansett, RI 02882. E-mail: schloess@uri.edu
Save
  • Abramowitz, M., and I. A. Stegun, Eds., 1965: Handbook of Mathematical Functions. Vol. 1. Dover, 1046 pp.

  • Andrews, D., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davey, M. K., and P. D. Killworth, 1989: Flows produced by discrete sources of buoyancy. J. Phys. Oceanogr., 19, 12791290, doi:10.1175/1520-0485(1989)019<1279:FPBDSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eldevik, T., J. E. Ø. Nilsen, D. Iovino, K. A. Olsson, A. B. Sandø, and H. Drange, 2009: Observed sources and variability of Nordic Seas overflow. Nat. Geosci., 2, 406410, doi:10.1038/ngeo518.

    • Search Google Scholar
    • Export Citation
  • Fukamachi, Y., J. Julian, P. McCreary, and J. A. Proehl, 1995: Instability of density fronts in layer and continuously stratified models. J. Geophys. Res., 100, 25592577, doi:10.1029/94JC02656

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean general circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1968: A linear model of the Antarctic Circumpolar Current. J. Fluid Mech., 32, 465488, doi:10.1017/S0022112068000868.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gill, A. E., J. M. Smith, R. P. Cleaver, R. Hide, and P. R. Jonas, 1979: The vortex created by mass transfer between layers of a rotating fluid. Geophys. Astrophys. Fluid Dyn., 12, 195220, doi:10.1080/03091927908242690.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, doi:10.1126/science.283.5410.2077.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1998: Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J. Phys. Oceanogr., 28, 422432, doi:10.1175/1520-0485(1998)028<0422:ETRBEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and K. G. Lamb, 1990: On parameterizing vertical mixing of momentum in non-eddy resolving ocean models. J. Phys. Oceanogr., 20, 16341637, doi:10.1175/1520-0485(1990)020<1634:OPVMOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248, doi:10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, H., and J. Marshall, 1993: Convection with rotation in a neutral ocean: A study of open-ocean deep convection. J. Phys. Oceanogr., 23, 10091039, doi:10.1175/1520-0485(1993)023<1009:CWRIAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawase, M., and D. Straub, 1991: Spinup of source-driven circulation in an abyssal basin in the presence of bottom topography. J. Phys. Oceanogr., 21, 15011514, doi:10.1175/1520-0485(1991)021<1501:SOSDCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kida, S., 2003: Eddy dynamics of β plumes. M.S. thesis, Massachusetts Institute of Technology–Woods Hole Oceanographic Institution, 84 pp.

  • Kida, S., J. Yang, and J. F. Price, 2009: Marginal sea overflows and the upper ocean interaction. J. Phys. Oceanogr., 39, 387403, doi:10.1175/2008JPO3934.1.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2007: Generation and stability of a quasi-permanent vortex in the Lofoten basin. J. Phys. Oceanogr., 37, 26372651, doi:10.1175/2007JPO3694.1.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and T. D. Mudge, 1997: Topographically induced mixing around a shallow seamount. Science, 276, 18311833, doi:10.1126/science.276.5320.1831.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, doi:10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., 1997: Boundary mixing and the dynamics of three-dimensional thermohaline circulations. J. Phys. Oceanogr., 27, 17131728, doi:10.1175/1520-0485(1997)027<1713:BMATDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., 2011: Rossby wormholes. J. Mar. Res., 69, 309330, doi:10.1357/002224011798765213.

  • Marshall, J., and F. Schott, 1999: Open ocean deep convection: Observations, models and theory. Rev. Geophys., 37, 164, doi:10.1029/98RG02739.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., 1996: Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Res. I, 43, 769806, doi:10.1016/0967-0637(96)00037-4.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pedlosky, J., and M. A. Spall, 2005: Boundary intensification of vertical velocity in a β-plane basin. J. Phys. Oceanogr., 35, 24872500, doi:10.1175/JPO2832.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6A, 273286, doi:10.1111/j.2153-3490.1954.tb01123.x.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227, doi:10.1175/JPO3178.1.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and I. Kamenkovich, 2011: Semi-adiabatic model of the deep stratification and meridional overturning. J. Phys. Oceanogr., 41, 757780, doi:10.1175/2010JPO4538.1.

    • Search Google Scholar
    • Export Citation
  • Raj, R. P., L. Chafik, J. E. Ø. Nilsen, T. Eldevik, and I. Halo, 2015: The Lofoten vortex of the Nordic Seas. Deep-Sea Res. I, 96, 114, doi:10.1016/j.dsr.2014.10.011.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., V. Ozhigin, V. Ivshin, and S. Bacon, 2009: An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten basin. Deep-Sea Res. I, 56, 19551971, doi:10.1016/j.dsr.2009.07.005.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 2009: A simple dynamical model of the warm-water branch of the middepth meridional overturning cell. J. Phys. Oceanogr., 39, 12161230, doi:10.1175/2008JPO4081.1.

    • Search Google Scholar
    • Export Citation
  • Schloesser, F., 2014: A dynamical model for the Leeuwin Undercurrent. J. Phys. Oceanogr., 44, 17981810, doi:10.1175/JPO-D-13-0226.1.

  • Schloesser, F., R. Furue, J. P. McCreary, and A. Timmermann, 2012: Dynamics of the Atlantic meridional overturning circulation. Part 1: Buoyancy-forced response. Prog. Oceanogr., 101, 3362, doi:10.1016/j.pocean.2012.01.002.

    • Search Google Scholar
    • Export Citation
  • Schloesser, F., R. Furue, J. P. McCreary, and A. Timmermann, 2014: Dynamics of the Atlantic meridional overturning circulation. Part 2: Forcing by winds and buoyancy. Prog. Oceanogr., 120, 154176, doi:10.1016/j.pocean.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Schott, F., and K. D. Leaman, 1991: Observations with moored acoustic Doppler current profilers in the convection regime in the Golfe du Lion. J. Phys. Oceanogr., 21, 558574, doi:10.1175/1520-0485(1991)021<0558:OWMADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Send, U., and J. Marshall, 1995: Integral effects of deep convection. J. Phys. Oceanogr., 25, 855872, doi:10.1175/1520-0485(1995)025<0855:IEODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2000: Buoyancy-forced circulations around islands and ridges. J. Mar. Res., 58, 957982, doi:10.1357/002224000763485764.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, doi:10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2010: Dynamics of downwelling in an eddy-resolving convective basin. J. Phys. Oceanogr., 40, 23412347, doi:10.1175/2010JPO4465.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2011: On the role of eddies and surface forcing in the heat transport and overturning circulation in marginal seas. J. Climate, 24, 48444858, doi:10.1175/2011JCLI4130.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and R. S. Pickart, 2001: Where does dense water sink? A subpolar gyre example. J. Phys. Oceanogr., 31, 810826, doi:10.1175/1520-0485(2001)031<0810:WDDWSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Eos, Trans. Amer. Geophys. Union, 29, 202206, doi:10.1029/TR029i002p00202.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1982: Is the South Pacific helium-3 plume dynamically active? Earth Planet. Sci. Lett., 61, 6367, doi:10.1016/0012-821X(82)90038-3

    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. B. Arons, 1960: On the abyssal circulation of the World Ocean—I. Stationary planetary flow pattern on a sphere. Deep-Sea Res., 6, 140154, doi:10.1016/0146-6313(59)90065-6.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J. Phys. Oceanogr., 36, 18221840, doi:10.1175/JPO2932.1.

    • Search Google Scholar
    • Export Citation
  • Straub, D. N., and P. B. Rhines, 1990: Effects of large-scale topography on abyssal circulation. J. Mar. Res., 48, 223253, doi:10.1357/002224090784988782.

    • Search Google Scholar
    • Export Citation
  • Talley, L., 1979: Steady two-layer source-sink flow. 1979 Summer Study Program in Geophysical Fluid Dynamics at the Woods Hole Oceanographic Institution Rep. WHOI-79-84, 22 pp.

  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res., 42, 477500, doi:10.1016/0967-0637(95)00012-U.

    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, M. A. Spall, G. Moore, H. Valdimarsson, D. J. Torres, S. Y. Erofeeva, and J. E. Ø. Nilsen, 2013: Revised circulation scheme north of the Denmark Strait. Deep-Sea Res. I, 79, 2039, doi:10.1016/j.dsr.2013.05.007.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. A. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walin, G., G. Broström, J. Nilsson, and O. Dahl, 2004: Baroclinic boundary currents with downstream decreasing buoyancy: A study of an idealized Nordic Seas system. J. Mar. Res., 62, 517543, doi:10.1357/0022240041850048.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1961: The thermohaline circulation in relation to the general circulation in the oceans. Deep-Sea Res., 8, 3964, doi:10.1016/0146-6313(61)90014-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 154 38 6
PDF Downloads 97 21 3