Submesoscale Instability and Generation of Mesoscale Anticyclones near a Separation of the California Undercurrent

M. Jeroen Molemaker Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. Jeroen Molemaker in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
William K. Dewar Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by William K. Dewar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The California Undercurrent (CUC) flows poleward mostly along the continental slope. It develops a narrow strip of large negative vertical vorticity through the turbulent boundary layer and bottom stress. In several downstream locations, the current separates, aided by topographic curvature and flow inertia, in particular near Point Sur Ridge, south of Monterey Bay. When this happens the high-vorticity strip undergoes rapid instability that appears to be mesoscale in “eddy-resolving” simulations but is substantially submesoscale with a finer computational grid. The negative relative vorticity in the CUC is larger than the background rotation f, and Ertel potential vorticity is negative. This instigates ageostrophic centrifugal instability. The submesoscale turbulence is partly unbalanced, has elevated local dissipation and mixing, and leads to dilution of the extreme vorticity values. Farther downstream, the submesoscale activity abates, and the remaining eddy motions exhibit an upscale organization into the mesoscale, resulting in long-lived coherent anticyclones in the depth range of 100–500 m (previously called Cuddies) that move into the gyre interior in a generally southwestward direction. In addition to the energy and mixing effects of the postseparation instability, there is are significant local topographic form stress and bottom torque that retard the CUC and steer the mean current pathway.

Corresponding author address: M. J. Molemaker, IGPP, UCLA, 405 Hilgard Ave., Los Angeles, CA 90095-1567. E-mail: nmolem@atmos.ucla.edu

Abstract

The California Undercurrent (CUC) flows poleward mostly along the continental slope. It develops a narrow strip of large negative vertical vorticity through the turbulent boundary layer and bottom stress. In several downstream locations, the current separates, aided by topographic curvature and flow inertia, in particular near Point Sur Ridge, south of Monterey Bay. When this happens the high-vorticity strip undergoes rapid instability that appears to be mesoscale in “eddy-resolving” simulations but is substantially submesoscale with a finer computational grid. The negative relative vorticity in the CUC is larger than the background rotation f, and Ertel potential vorticity is negative. This instigates ageostrophic centrifugal instability. The submesoscale turbulence is partly unbalanced, has elevated local dissipation and mixing, and leads to dilution of the extreme vorticity values. Farther downstream, the submesoscale activity abates, and the remaining eddy motions exhibit an upscale organization into the mesoscale, resulting in long-lived coherent anticyclones in the depth range of 100–500 m (previously called Cuddies) that move into the gyre interior in a generally southwestward direction. In addition to the energy and mixing effects of the postseparation instability, there is are significant local topographic form stress and bottom torque that retard the CUC and steer the mean current pathway.

Corresponding author address: M. J. Molemaker, IGPP, UCLA, 405 Hilgard Ave., Los Angeles, CA 90095-1567. E-mail: nmolem@atmos.ucla.edu
Save
  • Acheson, D. J., 1990: Elementary Fluid Dynamics. Oxford University Press, 397 pp.

  • Barnier, B., L. Siefried, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6, 363380, doi:10.1016/0924-7963(94)00034-9.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and D. Haidvogel, 1993: Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23, 17361753, doi:10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bower, A., L. Armi, and I. Ambar, 1995: Direct evidence of Meddy formation off the southwestern coast of Portugal. Deep-Sea Res. I, 42, 16211630, doi:10.1016/0967-0637(95)00045-8.

    • Search Google Scholar
    • Export Citation
  • Bower, A., L. Armi, and I. Ambar, 1997: Lagrangian observations of Meddy formation during a Mediterranean Undercurrent seeding experiment. J. Phys. Oceanogr., 27, 25452575, doi:10.1175/1520-0485(1997)027<2545:LOOMFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shepetkin, 2008a: Mesoscale to submesoscale transition in the California Current System: Flow structure and eddy flux. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System: Frontal processes. J. Phys. Oceanogr., 38, 4464, doi:10.1175/2007JPO3672.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J., and B. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., T. P. Mavor, J. A. Barth, and L. C. Breaker, 2006: Sea surface temperature fronts in the California Current System from geostationary satellite observations. J. Geophys. Res., 111, C09026, doi:10.1029/2006JC003541.

    • Search Google Scholar
    • Export Citation
  • Chelton, D., M. Schlax, and R. Samelson, 2007: Global observations of large ocean eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Chelton, D., M. Schlax, and R. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr.,91, 167–216, doi:10.1016/j.pocean.2011.01.002.

  • Collins, C., N. Gareld, T. Rago, F. Rishmiller, and E. Carter, 2000: Mean structure of the inshore countercurrent and California Undercurrent off Pt. Sur, California. Deep-Sea Res. II, 47, 765782, doi:10.1016/S0967-0645(99)00126-5.

    • Search Google Scholar
    • Export Citation
  • Collins, C., T. Marglina, T. Rago, and L. Ivanov, 2013: Looping RAFOS floats in the California Current System. Deep-Sea Res. II, 85, 4261, doi:10.1016/j.dsr2.2012.07.027.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 1988: Generation of submesoscale vortices: A new mechanism. J. Geophys. Res., 93, 66856693, doi:10.1029/JC093iC06p06685.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • Da Silva, A. M., C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 74 pp.

  • Dewar, W. K., and A. M. Hogg, 2010: Topographic inviscid dissipation of balanced flow. Ocean Modell., 32, 113, doi:10.1016/j.ocemod.2009.03.007.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., P. Berloff, and A. Hogg, 2011: Submesoscale generation by boundaries. J. Mar. Res., 69, 501522, doi:10.1357/002224011799849345.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., M. Molemaker, and J. McWilliams, 2015: Centrifugal instability and mixing in the California Undercurrent. J. Phys. Oceanogr., doi:10.1175/JPO-D-13-0269.1, in press.

    • Search Google Scholar
    • Export Citation
  • Dillon, T., and D. Caldwell, 1980: The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res., 85, 19101916, doi:10.1029/JC085iC04p01910.

    • Search Google Scholar
    • Export Citation
  • Dong, C., J. McWilliams, and A. Shchepetkin, 2007: Island wakes in deep water. J. Phys. Oceanogr., 37, 962981, doi:10.1175/JPO3047.1.

    • Search Google Scholar
    • Export Citation
  • Garfield, N., C. Collins, R. Paquette, and E. Carter, 1999: Lagrangian exploration of the California Undercurrent. J. Phys. Oceanogr., 29, 560583, doi:10.1175/1520-0485(1999)029<0560:LEOTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greenan, B., N. Oakey, and F. Dobson, 2001: Estimates of dissipation in the ocean mixed layer using a quasi-horizontal microstructure profiler. J. Phys. Oceanogr., 31, 9921004, doi:10.1175/1520-0485(2001)031<0992:EODITO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D., J. McWilliams, and P. Gent, 1992: Boundary current separation in a quasigeostrophic, eddy-resolving ocean circulation model. J. Phys. Oceanogr., 22, 882902, doi:10.1175/1520-0485(1992)022<0882:BCSIAQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haney, R., and R. Hale, 2001: Oshore propagation of eddy kinetic energy in the California Current. J. Geophys. Res., 106, 11 70911 717, doi:10.1029/2000JC000433.

    • Search Google Scholar
    • Export Citation
  • Hickey, B., 1998: Coastal oceanography of western North America from the tip of Baja, California to Vancouver Island. The Global Coastal Ocean: Regional Studies and Syntheses, A. R. Robinson and K. H. Brink, Ed., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 11, John Wiley and Sons, 345–393.

  • Hoskins, B., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, doi:10.1002/qj.49710042520.

    • Search Google Scholar
    • Export Citation
  • Huyer, A., J. Barth, P. Kosro, R. Shearman, and R. Smith, 1998: Upper-ocean water mass characteristics of the California Current, summer 1993. Deep-Sea Res. II, 45, 14111442, doi:10.1016/S0967-0645(98)80002-7.

    • Search Google Scholar
    • Export Citation
  • Kiss, A., 2002: Potential vorticity “crises”, adverse pressure gradients, and western boundary current separation. J. Mar. Res., 60, 779803, doi:10.1357/002224002321505138.

    • Search Google Scholar
    • Export Citation
  • Kurian, J., F. Colas, X. Capet, J. McWilliams, and D. Chelton, 2011: Eddy properties in the California Current System. J. Geophys. Res.,116, C08027, doi:10.1029/2010JC006895.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. Shchepetkin, M. Molemaker, F. Colas, and J. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell.,42, 57–79, doi:10.1016/j.ocemod.2011.11.007.

  • MacCready, P., G. Pawlak, K. A. Edwards, and R. McCabe, 2003: Form drag on ocean flows. Proc. 13th ‘Aha Huliko‘a Hawaiian Winter Workshop on Near Boundary Processes and their Parameterization, Honolulu, HI, University of Hawai‘i at Mānoa, 119130.

  • Marchesiello, P., J. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33, 753783, doi:10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mason, E., J. Molemaker, A. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, doi:10.1016/j.ocemod.2010.05.007.

    • Search Google Scholar
    • Export Citation
  • McCabe, R., P. MacCready, and G. Pawlak, 2006: Form drag due to flow separation at a headland. J. Phys. Oceanogr., 36, 21362152, doi:10.1175/JPO2966.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1984: The emergence of isolated, coherent vortices in turbulent flow. J. Fluid Mech., 146, 2143, doi:10.1017/S0022112084001750.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, doi:10.1029/RG023i002p00165.

  • McWilliams, J. C., 1988: Vortex generation through balanced adjustment. J. Phys. Oceanogr., 18, 11781192, doi:10.1175/1520-0485(1988)018<1178:VGTBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. Weiss, and I. Yavneh, 1994: Anisotropy and coherent structures in planetary turbulence. Science, 264, 410413, doi:10.1126/science.264.5157.410.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., M. J. Molemaker, and I. Yavneh, 2004: Ageostrophic, anticyclonic instability of a geostrophic, barotropic boundary current. Phys. Fluids, 16, 37203725, doi:10.1063/1.1785132.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., and J. C. McWilliams, 2010: Local balance and cross-scale flux of available potential energy. J. Fluid Mech., 645, 295314, doi:10.1017/S0022112009992643.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2001: Instability and equilibration of centrifugally-stable stratified Taylor-Couette flow. Phys. Rev. Lett., 86, 52705273, doi:10.1103/PhysRevLett.86.5270.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, doi:10.1175/JPO2770.1.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Search Google Scholar
    • Export Citation
  • Pascual, A., F. Faugre, G. Larnicol, and P. L. Traon, 2006: Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett., 33, L02611, doi:10.1029/2005GL024633.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pelland, N., C. Eriksen, and C. Lee, 2013: Subthermocline eddies over the Washington continental slope as observed by seagliders, 2003–09. J. Phys. Oceanogr., 43, 20252053, doi:10.1175/JPO-D-12-086.1.

    • Search Google Scholar
    • Export Citation
  • Penven, P., L. Debreu, P. Marchesiello, and J. McWilliams, 2006: Application of the ROMS embedding procedure for the central California upwelling system. Ocean Modell., 12, 157187, doi:10.1016/j.ocemod.2005.05.002.

    • Search Google Scholar
    • Export Citation
  • Pierce, S. D., R. L. Smith, P. M. Kosro, J. A. Barth, and C. D. Wilson, 2000: Continuity of the poleward undercurrent along the eastern boundary of the mid-latitude North Pacific. Deep-Sea Res. II, 47, 811–829, doi:10.1016/S0967-0645(99)00128-9.

    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., and F. Hernandez, 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109, C12032, doi:10.1029/2003JC002226.

    • Search Google Scholar
    • Export Citation
  • Risien, C., and D. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, doi:10.1175/2008JPO3881.1.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D., 2001: On the skewness of vorticity in the upper ocean. Geophys. Res. Lett., 28, 20452048, doi:10.1029/2000GL012265.

  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comput. Phys. 227, pp. 3595–3624. J. Comput. Phys.,228, 8985–9000, doi:10.1016/j.jcp.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Smith, W., and D. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19571962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and D. Wright, 1998: A general pressure gradient formulation for ocean models. Part II: Energy, momentum, and bottom torque consistency. Mon. Wea. Rev., 126, 3231–3247, doi:10.1175/1520-0493(1998)126<3231:AGPGFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stegmann, P., and F. Schwing, 2007: Demographics of mesoscale eddies in the California Current. Geophys. Res. Lett., 34, L14602, doi:10.1029/2007GL029504.

    • Search Google Scholar
    • Export Citation
  • Swenson, M., and P. Niiler, 1996: Statistical analysis of the surface circulation of the California Current. J. Geophys. Res., 101, 22 63122 645, doi:10.1029/96JC02008.

    • Search Google Scholar
    • Export Citation
  • Todd, R., D. Rudnick, M. Mazloff, R. Davis, and B. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, doi:10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
  • Yavneh, I., J. C. McWilliams, and M. J. Molemaker, 2001: Non-axisymmetric instability of centrifugally-stable stratified Taylor–Couette flow. J. Fluid Mech., 448, 121, doi:10.1017/S0022112001005109.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1296 488 85
PDF Downloads 1088 315 15