Latitude of Eastward Jet Prematurely Separated from the Western Boundary in a Two-Layer Quasigeostrophic Model

Yasunori Sue Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan

Search for other papers by Yasunori Sue in
Current site
Google Scholar
PubMed
Close
and
Atsushi Kubokawa Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan

Search for other papers by Atsushi Kubokawa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper investigates the formation of eastward jets extended from western boundary currents, using a simple two-layer quasigeostrophic (QG) model forced by a wind stress curl consistent with the formation of a subtropical gyre. The study investigated the dependency of the latitude of the eastward jet on various parameters and on the meridional distribution of the Ekman pumping velocity. The parameters considered in the present study included the viscous and inertial western boundary layer width, the parameter representing the degree of the partial-slip boundary condition, the ratio of the upper- to lower-layer depth, and the bottom friction. With the parameters used, two types of stable structures are found in the time-mean field. One type of structure represented the “prematurely separated jet case,” in which the eastward extension jet was located far south of the northern boundary of the subtropical gyre, as is the Kuroshio Extension; the other type was the “gyre boundary jet case,” in which the eastward jet occurred along the northern boundary. The initial condition decides which type of structure would occur. When the prematurely separated jet case occurred, the authors found that the latitude of the eastward jet depended very little on the parameters. In addition, this study also observed that the latitude was determined by the meridional distribution of the Ekman pumping velocity. The eastward extension jet was usually located near the latitude that was half of the maximum value of the Sverdrup streamfunction and satisfied an integral condition derived from the QG potential vorticity equation.

Corresponding author address: Yasunori Sue, Graduate School of Environmental Science, Hokkaido University, Kitaku, Kita 8, Nishi 5, Sapporo, Hokkaido 060-0808, Japan. E-mail: sue@ees.hokudai.ac.jp

Abstract

This paper investigates the formation of eastward jets extended from western boundary currents, using a simple two-layer quasigeostrophic (QG) model forced by a wind stress curl consistent with the formation of a subtropical gyre. The study investigated the dependency of the latitude of the eastward jet on various parameters and on the meridional distribution of the Ekman pumping velocity. The parameters considered in the present study included the viscous and inertial western boundary layer width, the parameter representing the degree of the partial-slip boundary condition, the ratio of the upper- to lower-layer depth, and the bottom friction. With the parameters used, two types of stable structures are found in the time-mean field. One type of structure represented the “prematurely separated jet case,” in which the eastward extension jet was located far south of the northern boundary of the subtropical gyre, as is the Kuroshio Extension; the other type was the “gyre boundary jet case,” in which the eastward jet occurred along the northern boundary. The initial condition decides which type of structure would occur. When the prematurely separated jet case occurred, the authors found that the latitude of the eastward jet depended very little on the parameters. In addition, this study also observed that the latitude was determined by the meridional distribution of the Ekman pumping velocity. The eastward extension jet was usually located near the latitude that was half of the maximum value of the Sverdrup streamfunction and satisfied an integral condition derived from the QG potential vorticity equation.

Corresponding author address: Yasunori Sue, Graduate School of Environmental Science, Hokkaido University, Kitaku, Kita 8, Nishi 5, Sapporo, Hokkaido 060-0808, Japan. E-mail: sue@ees.hokudai.ac.jp
Save
  • Bleck, R., S. Dean, M. O’Keefe, and A. Sawdey, 1995: A comparison of data-parallel and message-passing versions of the Miami Isopycnic Coordinate Ocean Model. Parallel Comput., 21, 16951720, doi:10.1016/0167-8191(95)00043-3.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., and M. D. Cox, 1972: The circulation of the World Ocean: A numerical study. Part I, a homogeneous model. J. Phys. Oceanogr., 2, 319335, doi:10.1175/1520-0485(1972)002<0319:TCOTWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., and G. R. Ierley, 1995: Symmetry-breaking multiple equilibria in quasigeostrophic, wind-driven flows. J. Phys. Oceanogr., 25, 11961205, doi:10.1175/1520-0485(1995)025<1196:SBMEIQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dengo, J., 1993: The problem of Gulf Stream separation: A barotropic approach. J. Phys. Oceanogr., 23, 21822200, doi:10.1175/1520-0485(1993)023<2182:TPOGSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., 2005: Reevaluating the roles of eddies in multiple barotropic wind-driven gyres. J. Phys. Oceanogr., 35, 12631278, doi:10.1175/JPO2743.1.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, doi:10.1175/2010JCLI3731.1.

    • Search Google Scholar
    • Export Citation
  • Griffiths, R. W., and A. E. Kiss, 1999: Flow regimes in a wide ‘sliced-cylinder’ model of homogeneous beta-plane circulation. J. Fluid Mech., 399, 205236, doi:10.1017/S0022112099006370.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., J. C. McWilliams, and P. R. Gent, 1992: Boundary current separation in a quasigeostrophic eddy-resolving ocean model. J. Phys. Oceanogr., 22, 882902, doi:10.1175/1520-0485(1992)022<0882:BCSIAQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, Y. J., 1984: A numerical world ocean general circulation model: Part II. A baroclinic experiment. Dyn. Atmos. Oceans, 8, 141172, doi:10.1016/0377-0265(84)90020-4.

    • Search Google Scholar
    • Export Citation
  • Ierley, G. R., 1987: On the onset of inertial recirculation in barotropic general circulation models. J. Phys. Oceanogr., 17, 23662374, doi:10.1175/1520-0485(1987)017<2366:OTOOIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ierley, G. R., 1990: Boundary layers in the general ocean circulation. Annu. Rev. Fluid Mech., 22, 111142, doi:10.1146/annurev.fl.22.010190.000551.

    • Search Google Scholar
    • Export Citation
  • Ierley, G. R., and O. G. Ruehr, 1986: Analytic and numerical solutions of a nonlinear boundary-layer problem. Stud. Appl. Math., 75, 136.

    • Search Google Scholar
    • Export Citation
  • Ierley, G. R., and V. A. Sheremet, 1995: Multiple solutions and advection-dominated flow in the wind-driven circulation. Part I: Slip. J. Mar. Res., 53, 703737, doi:10.1357/0022240953213052.

    • Search Google Scholar
    • Export Citation
  • Imai, Y., T. Aoki, and K. Takizawa, 2008: Conservative form of interpolated differential operator scheme for compressible and incompressible fluid dynamics. J. Comput. Phys., 227, 22632285, doi:10.1016/j.jcp.2007.11.031.

    • Search Google Scholar
    • Export Citation
  • Jiang, S., F. Jin, and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven double-gyre, shallow-water model. J. Phys. Oceanogr., 25, 764786, doi:10.1175/1520-0485(1995)025<0764:MEPAAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, V. M., V. A. Sheremet, A. R. Pastushkov, and S. O. Belotserkovsky, 1995: Analysis of the barotropic model of the subtropical gyre in the ocean for finite Reynolds numbers. Part I. J. Mar. Res., 53, 959994, doi:10.1357/0022240953212981.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., 2002: Potential vorticity “crises”, adverse pressure gradients, and western boundary current separation. J. Mar. Res., 60, 779803, doi:10.1357/002224002321505138.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., and D. P. Tansley, 2001: An implicit formula for boundary current separation. J. Phys. Oceanogr., 31, 16331638, doi:10.1175/1520-0485(2001)031<1633:AIFFBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCalpin, J. D., and D. B. Haidvogel, 1996: Phenomenology of the low-frequency variability in a reduced-gravity, quasigeostrophic double-gyre model. J. Phys. Oceanogr., 26, 739752, doi:10.1175/1520-0485(1996)026<0739:POTLFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1996: Modeling the oceanic general circulation. Annu. Rev. Fluid Mech., 28, 215248, doi:10.1146/annurev.fl.28.010196.001243.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., J. Morzel, D. B. Chelton, and M. H. Freilich, 2004: Wind stress curl and wind stress divergence biases from rain effects on QSCAT surface wind retrievals. J. Atmos. Oceanic Technol., 21, 12161231, doi:10.1175/1520-0426(2004)021<1216:WSCAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., H. Tsujino, and R. Furue, 2008: The Kuroshio current system as a jet and twin “relative” recirculation gyres embedded in the Sverdrup circulation. Dyn. Atmos. Oceans, 45, 135164, doi:10.1016/j.dynatmoce.2007.09.002.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., E. P. Chassignet, and A. M. Paiva, 1997: Impact of wind forcing, bottom topography, and inertia on midlatitude jet separation in a quasigeostrophic model. J. Phys. Oceanogr., 27, 24602476, doi:10.1175/1520-0485(1997)027<2460:IOWFBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierini, S., 2006: A Kuroshio Extension system model study: Decadal chaotic self-sustained oscillations. J. Phys. Oceanogr., 36, 16051625, doi:10.1175/JPO2931.1.

    • Search Google Scholar
    • Export Citation
  • Primeau, F. W., and D. Newman, 2007: Bifurcation structure of a wind-driven shallow water model with layer-outcropping. Ocean Modell., 16, 250263, doi:10.1016/j.ocemod.2006.10.003.

    • Search Google Scholar
    • Export Citation
  • Sasai, C. Y., K. J. Richards, A. Ishida, and H. Sasaki, 2010: Effects of cyclonic mesoscale eddies on the marine ecosystem in the Kuroshio Extension region using an eddy-resolving coupled physical-biological model. Ocean Dyn., 60, 693704, doi:10.1007/s10236-010-0264-8.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and N. Schneider, 2011: Decadal shifts of the Kuroshio Extension jet: Application of thin-jet theory. J. Phys. Oceanogr., 41, 979993, doi:10.1175/2010JPO4550.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30, 15321561, doi:10.1175/1520-0485(2000)030<1532:NSOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and K. Hanawa, 2012: Relationship between the path of the Kuroshio in the south of Japan and the path of the Kuroshio Extension in the east. J. Oceanogr., 68, 219225, doi:10.1007/s10872-011-0089-1.

    • Search Google Scholar
    • Export Citation
  • Takano, K., Y. Mintz, and Y. Han, 1973: Numerical simulation of World Ocean circulation. Bull. Amer. Meteor. Soc., 54, 749.

  • Verron, J., and C. Le Provost, 1991: Response of eddy-resolved general circulation numerical models to asymmetrical wind forcing. Dyn. Atmos. Oceans, 15, 505533, doi:10.1016/0377-0265(91)90002-W.

    • Search Google Scholar
    • Export Citation
  • Verron, J., and J. H. Jo, 1994: On the stability of wind-driven barotropic ocean circulations. Fluid Dyn. Res., 14, 727, doi:10.1016/0169-5983(94)90019-1.

    • Search Google Scholar
    • Export Citation
  • Verron, J., and E. Blayo, 1996: The no-slip condition and separation of western boundary currents. J. Phys. Oceanogr., 26, 19381951, doi:10.1175/1520-0485(1996)026<1938:TNSCAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 72 25
PDF Downloads 142 53 12