Langmuir Turbulence under Hurricane Gustav (2008)

Tyler J. Rabe University of Delaware, Newark, Delaware

Search for other papers by Tyler J. Rabe in
Current site
Google Scholar
PubMed
Close
,
Tobias Kukulka University of Delaware, Newark, Delaware

Search for other papers by Tobias Kukulka in
Current site
Google Scholar
PubMed
Close
,
Isaac Ginis University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Isaac Ginis in
Current site
Google Scholar
PubMed
Close
,
Tetsu Hara University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Tetsu Hara in
Current site
Google Scholar
PubMed
Close
,
Brandon G. Reichl University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Brandon G. Reichl in
Current site
Google Scholar
PubMed
Close
,
Eric A. D’Asaro University of Washington, Seattle, Washington

Search for other papers by Eric A. D’Asaro in
Current site
Google Scholar
PubMed
Close
,
Ramsey R. Harcourt University of Washington, Seattle, Washington

Search for other papers by Ramsey R. Harcourt in
Current site
Google Scholar
PubMed
Close
, and
Peter P. Sullivan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter P. Sullivan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme winds and complex wave fields drive upper-ocean turbulence in tropical cyclone conditions. Motivated by Lagrangian float observations of bulk vertical velocity variance (VVV) under Hurricane Gustav (2008), upper-ocean turbulence is investigated based on large-eddy simulation (LES) of the wave-averaged Navier–Stokes equations. To realistically capture wind- and wave-driven Langmuir turbulence (LT), the LES model imposes the Stokes drift vector from spectral wave simulations; both the LES and wave model are forced by the NOAA Hurricane Research Division (HRD) surface wind analysis product. Results strongly suggest that without LT effects simulated VVV underestimates the observed VVV. LT increases the VVV, indicating that it plays a significant role in upper-ocean turbulence dynamics. Consistent with observations, the LES predicts a suppression of VVV near the hurricane eye due to wind-wave misalignment. However, this decrease is weaker and of shorter duration than that observed, potentially due to large-scale horizontal advection not present in the LES. Both observations and simulations are consistent with a highly variable upper ocean turbulence field beneath tropical cyclone cores. Bulk VVV, a TKE budget analysis, and anisotropy coefficient (ratio of horizontal to vertical velocity variances) profiles all indicate that LT is suppressed to levels closer to that of shear turbulence (ST) due to misaligned wind and wave fields. VVV approximately scales with the directional surface layer Langmuir number. Such a scaling provides guidance for the development of an upper-ocean boundary layer parameterization that explicitly depends on sea state.

Corresponding author address: Tobias Kukulka, 211 Robinson Hall, School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, DE 19716. E-mail: kukulka@udel.edu

Abstract

Extreme winds and complex wave fields drive upper-ocean turbulence in tropical cyclone conditions. Motivated by Lagrangian float observations of bulk vertical velocity variance (VVV) under Hurricane Gustav (2008), upper-ocean turbulence is investigated based on large-eddy simulation (LES) of the wave-averaged Navier–Stokes equations. To realistically capture wind- and wave-driven Langmuir turbulence (LT), the LES model imposes the Stokes drift vector from spectral wave simulations; both the LES and wave model are forced by the NOAA Hurricane Research Division (HRD) surface wind analysis product. Results strongly suggest that without LT effects simulated VVV underestimates the observed VVV. LT increases the VVV, indicating that it plays a significant role in upper-ocean turbulence dynamics. Consistent with observations, the LES predicts a suppression of VVV near the hurricane eye due to wind-wave misalignment. However, this decrease is weaker and of shorter duration than that observed, potentially due to large-scale horizontal advection not present in the LES. Both observations and simulations are consistent with a highly variable upper ocean turbulence field beneath tropical cyclone cores. Bulk VVV, a TKE budget analysis, and anisotropy coefficient (ratio of horizontal to vertical velocity variances) profiles all indicate that LT is suppressed to levels closer to that of shear turbulence (ST) due to misaligned wind and wave fields. VVV approximately scales with the directional surface layer Langmuir number. Such a scaling provides guidance for the development of an upper-ocean boundary layer parameterization that explicitly depends on sea state.

Corresponding author address: Tobias Kukulka, 211 Robinson Hall, School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, DE 19716. E-mail: kukulka@udel.edu
Save
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett.,39, L18605, doi:10.1029/2012GL052932.

  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, doi:10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, doi:10.1017/S0022112076001420.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2001: Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 35303537, doi:10.1175/1520-0485(2002)031<3530:TVKEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003a: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579, doi:10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003b: Performance of autonomous Lagrangian floats. J. Atmos. Oceanic Technol., 20, 896911, doi:10.1175/1520-0426(2003)020<0896:POALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and C. McNeil, 2007: Air–sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats. J. Mar. Syst., 66, 92109, doi:10.1016/j.jmarsys.2006.06.007.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., D. M. Farmer, J. T. Osse, and G. T. Dairiki, 1996: A Lagrangian float. J. Atmos. Oceanic Technol., 13, 1230–1246, doi:10.1175/1520-0426(1996)013<1230:ALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Shcherbina, R. Harcourt, M. Cronin, M. Hemer, and B. Fox-Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102–107, doi:10.1002/2013GL058193.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1973: The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluids Eng., 95, 429–438, doi:10.1115/1.3447047.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2013: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387–398, doi:10.1175/BAMS-D-12-00240.1.

    • Search Google Scholar
    • Export Citation
  • Donelan, M., B. Haus, N. Reul, W. Plant, M. Stiassnie, H. Graber, O. Brown, and E. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, 2009: Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr., 39, 20972116, doi:10.1175/2009JPO4224.1.

    • Search Google Scholar
    • Export Citation
  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, doi:10.1175/JAS3887.1.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., 2012: Bubble-induced turbulence suppression in Langmuir circulation. Geophys. Res. Lett., 39, L10604, doi:10.1029/2012GL051691.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, doi:10.1175/2009JPO4119.1.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2011: Wind-driven mixing below the oceanic mixed layer. J. Phys. Oceanogr., 41, 15561575, doi:10.1175/JPO-D-10-05020.1.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, doi:10.1175/2007JPO3842.1.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2010: Measurement of vertical kinetic energy and vertical velocity skewness in oceanic boundary layers by imperfectly Lagrangian floats. J. Atmos. Oceanic Technol., 27, 19181935, doi:10.1175/2010JTECHO731.1.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res.,117, C09003, doi:10.1029/2012JC007983.

  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, doi:10.1029/JC074i028p06991.

  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2009: Significance of Langmuir circulation in upper ocean mixing: Comparison of observations and simulations. Geophys. Res. Lett., 36, L10603, doi:10.1029/2009GL037620.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2010: Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: A case study. J. Phys. Oceanogr., 40, 23812400, doi:10.1175/2010JPO4403.1.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, and P. P. Sullivan, 2013: Inhibited upper ocean restratification in nonequilibrium swell conditions. Geophys. Res. Lett., 40, 3672–3676, doi:10.1002/grl.50708.

    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123, doi:10.1126/science.87.2250.119.

  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, doi:10.1016/j.dsr.2004.09.004.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. R. Restrepo, and E. M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in shallow coastal water. J. Fluid Mech., 511, 135178, doi:10.1017/S0022112004009358.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, doi:10.1175/JPO-D-12-07.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr.,44, 870–890, doi:10.1175/JPO-D-13-0122.1.

  • Melville, W., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, doi:10.1146/annurev.fl.28.010196.001431.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monin, A., and A. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735, doi:10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., J. A. Smith, D. M. Farmer, R. A. Weller, W. R. Crawford, R. Pinkel, S. Vagle, and A. Gnanadesikan, 1996: Structure and variability of Langmuir circulation during the surface waves processes program. J. Geophys. Res., 101, 35253543, doi:10.1029/95JC03282.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res.,112, C09020, doi:10.1029/2007JC004205.

  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, doi:10.1016/S0167-6105(98)00131-7.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Coauthors, 2010: Reconstruction of Hurricane Katrina’s wind fields for storm surge and wave hindcasting. Ocean Eng., 37, 2636, doi:10.1016/j.oceaneng.2009.08.014.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., P. G. Black, J. R. Haustein, J. W. Feeney, G. Z. Forristall, and J. F. Price, 1987: Ocean response to a hurricane. Part I: Observations. J. Phys. Oceanogr., 17, 20652083, doi:10.1175/1520-0485(1987)017<2065:ORTAHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. F. Price, and J. B. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056, doi:10.1175/2010JPO4313.1.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res.,97, 20 227–20 248, doi:10.1029/92JC01586.

  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res.,100, 8501–8522, doi:10.1029/94JC03202.

  • Skyllingstad, E. D., W. Smyth, and G. Crawford, 2000: Resonant wind-driven mixing in the ocean boundary layer. J. Phys. Oceanogr., 30, 18661890, doi:10.1175/1520-0485(2000)030<1866:RWDMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1998: Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103, 12 64912 668, doi:10.1029/97JC03611.

  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, doi:10.1007/BF00713741.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, doi:10.1017/S002211200700897X.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 1959–1980, doi:10.1175/JPO-D-12-025.1.

    • Search Google Scholar
    • Export Citation
  • Terray, E., M. Donelan, Y. Agrawal, W. Drennan, K. Kahma, A. Williams, P. Hwang, and S. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH-III, version 3.14. NOAA/NWS/NCEP/MMAB Tech. Note 276, 220 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf.]

  • Van Roekel, L., B. Fox-Kemper, P. Sullivan, P. Hamlington, and S. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res.,117, C05001, doi:10.1029/2011JC007516.

  • Zedler, S., T. Dickey, S. Doney, J. Price, X. Yu, and G. Mellor, 2002: Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res.,107, 3232, doi:10.1029/2001JC000969.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 355 135 14
PDF Downloads 220 87 13