The Dynamics of Southern Ocean Storm Tracks

Christopher C. Chapman Research School of Earth Sciences, and ARC Centre of Excellence for Climate System Science, The Australian National University, Canberra, Australian Capital Territory, and CSIRO Wealth From Oceans Flagship, Hobart, Tasmania, Australia

Search for other papers by Christopher C. Chapman in
Current site
Google Scholar
PubMed
Close
,
Andrew McC. Hogg Research School of Earth Sciences, and ARC Centre of Excellence for Climate System Science, The Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Andrew McC. Hogg in
Current site
Google Scholar
PubMed
Close
,
Andrew E. Kiss School of Physical, Mathematical and Environmental Sciences, University of New South Wales Canberra at the Australian Defence Force Academy, Australia, and ARC Centre of Excellence for Climate System Science, The Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Andrew E. Kiss in
Current site
Google Scholar
PubMed
Close
, and
Stephen R. Rintoul CSIRO Wealth from Oceans Flagship, and Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia

Search for other papers by Stephen R. Rintoul in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mechanisms that initiate and maintain oceanic “storm tracks” (regions of anomalously high eddy kinetic energy) are studied in a wind-driven, isopycnal, primitive equation model with idealized bottom topography. Storm tracks are found downstream of the topography in regions strongly influenced by a large-scale stationary meander that is generated by the interaction between the background mean flow and the topography. In oceanic storm tracks the length scale of the stationary meander differs from that of the transient eddies, a point of distinction from the atmospheric storm tracks. When the zonal length and height of the topography are varied, the storm-track intensity is largely unchanged and the downstream storm-track length varies only weakly. The dynamics of the storm track in this idealized configuration are investigated using a wave activity flux (related to the Eliassen–Palm flux and eddy energy budgets). It is found that vertical fluxes of wave activity (which correspond to eddy growth by baroclinic conversion) are localized to the region influenced by the standing meander. Farther downstream, organized horizontal wave activity fluxes (which indicate eddy energy fluxes) are found. A mechanism for the development of oceanic storm tracks is proposed: the standing meander initiates localized conversion of energy from the mean field to the eddy field, while the storm track develops downstream of the initial baroclinic growth through the ageostrophic flux of Montgomery potential. Finally, the implications of this analysis for the parameterization and prediction of storm tracks in ocean models are discussed.

Current affliation: CNRS/LOCEAN-IPSL, Université de Pierre et Marie Curie, Paris, France.

Corresponding author address: C. C. Chapman, CNRS/LOCEAN-IPSL, Université de Pierre et Marie Curie, Paris, 75252 Cedex 05, France. E-mail: chris.chapman.28@gmail.com

Abstract

The mechanisms that initiate and maintain oceanic “storm tracks” (regions of anomalously high eddy kinetic energy) are studied in a wind-driven, isopycnal, primitive equation model with idealized bottom topography. Storm tracks are found downstream of the topography in regions strongly influenced by a large-scale stationary meander that is generated by the interaction between the background mean flow and the topography. In oceanic storm tracks the length scale of the stationary meander differs from that of the transient eddies, a point of distinction from the atmospheric storm tracks. When the zonal length and height of the topography are varied, the storm-track intensity is largely unchanged and the downstream storm-track length varies only weakly. The dynamics of the storm track in this idealized configuration are investigated using a wave activity flux (related to the Eliassen–Palm flux and eddy energy budgets). It is found that vertical fluxes of wave activity (which correspond to eddy growth by baroclinic conversion) are localized to the region influenced by the standing meander. Farther downstream, organized horizontal wave activity fluxes (which indicate eddy energy fluxes) are found. A mechanism for the development of oceanic storm tracks is proposed: the standing meander initiates localized conversion of energy from the mean field to the eddy field, while the storm track develops downstream of the initial baroclinic growth through the ageostrophic flux of Montgomery potential. Finally, the implications of this analysis for the parameterization and prediction of storm tracks in ocean models are discussed.

Current affliation: CNRS/LOCEAN-IPSL, Université de Pierre et Marie Curie, Paris, France.

Corresponding author address: C. C. Chapman, CNRS/LOCEAN-IPSL, Université de Pierre et Marie Curie, Paris, 75252 Cedex 05, France. E-mail: chris.chapman.28@gmail.com
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, doi:10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., R. Hallberg, and M. Harrison, 2008: A finite volume discretization of the pressure gradient force using analytic integration. Ocean Modell., 22, 106113, doi:10.1016/j.ocemod.2008.02.001.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., and T. Yamagata, 2006: Energetics of the layer-thickness form drag based on an integral identity. Ocean Sci., 2, 161171, doi:10.5194/os-2-161-2006.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., and K. J. Richards, 2008: Energetics of the global ocean: The role of layer-thickness form drag. J. Phys. Oceanogr., 38, 18451869, doi:10.1175/2008JPO3820.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2012: The global distribution of atmospheric eddy length scales. J. Climate, 25, 34093416, doi:10.1175/JCLI-D-11-00331.1.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., J. C. Marshall, and A. A. White, 1993: Quasigeostrophic potential vorticity in isentropic coordinates. J. Atmos. Sci., 50, 778782, doi:10.1175/1520-0469(1993)050<0778:QPVIIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and A. F. Thompson, 2014: Configuration of a Southern Ocean storm track. J. Phys. Oceanogr., 44, 3072–3078, doi:10.1175/JPO-D-14-0062.1.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1985: On the conversion between mean and eddy components of potential and kinetic energy in isentropic and isopycnic coordinates. Dyn. Atmos. Oceans, 9, 1737, doi:10.1016/0377-0265(85)90014-4.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2014: A gentle stroll through EP flux theory. Eur. J. Mech. B/Fluids,47, 12–15, doi:10.1016/j.euromechflu.2014.01.010.

  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015, doi:10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chapman, C. C., 2014: Southern Ocean jets and how to find them: Improving and comparing common jet detection methods. J. Geophys. Res. Oceans, 119, 43184339, doi:10.1002/2014JC009810.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Danielson, R. E., J. R. Gyakum, and D. N. Straub, 2006: A case study of downstream baroclinic development over the North Pacific Ocean. Part II: Diagnoses of eddy energy and wave activity. Mon. Wea. Rev., 134, 15491567, doi:10.1175/MWR3173.1.

    • Search Google Scholar
    • Export Citation
  • Farge, M., 1992: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech., 24, 395458, doi:10.1146/annurev.fl.24.010192.002143.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., 2003: Baroclinic instability. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Curry, and J. A. Pyle, Eds., Academic Press, 179–188, doi:10.1016/B0-12-227090-8/00076-2.

  • Hallberg, R., and P. Rhines, 1996: Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. J. Phys. Oceanogr., 26, 913940, doi:10.1175/1520-0485(1996)026<0913:BDCIAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Adcroft, 2009: Reconciling estimates of the free surface height in Lagrangian vertical coordinate ocean models with mode-split time stepping. Ocean Modell., 29, 1526, doi:10.1016/j.ocemod.2009.02.008.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1983: Barotropic instability of the polar night jet stream. J. Atmos. Sci., 40, 817835, doi:10.1175/1520-0469(1983)040<0817:BIOTPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. Hoskins and R. Pearce, Eds., Academic Press, 127–168.

  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 1995: Rossby waves in the Southern Ocean: A comparison of TOPEX/POSEIDON altimetry with model predictions. J. Geophys. Res., 100, 15 93315 950, doi:10.1029/95JC01380.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110, C11008, doi:10.1029/2004JC002753.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and E. R. Ash, 2001: Eddy forcing of the mean flow in the Southern Ocean. J. Geophys. Res., 106, 27132722, doi:10.1029/2000JC900332.

    • Search Google Scholar
    • Export Citation
  • Hughes, G. O., A. M. C. Hogg, and R. W. Griffiths, 2009: Available potential energy and irreversible mixing in the meridional overturning circulation. J. Phys. Oceanogr., 39, 31303146, doi:10.1175/2009JPO4162.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, doi:10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2011: Downstream self-destruction of storm tracks. J. Atmos. Sci., 68, 24592464, doi:10.1175/JAS-D-10-05002.1.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 25962613, doi:10.1175/JAS-D-12-082.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, doi:10.1175/JPO-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and P. Cornillon, 1996: Propagation and growth of Gulf Stream meanders between 75° and 45°W. J. Phys. Oceanogr., 26, 225241, doi:10.1175/1520-0485(1996)026<0225:PAGOGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-J., and M. Mak, 1996: The role of orography in the dynamics of storm tracks. J. Atmos. Sci., 53, 17371750, doi:10.1175/1520-0469(1996)053<1737:TROOIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, doi:10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean. J. Earth Simul., 1, 3556. [Available online at www.jamstec.go.jp/esc/publication/journal/jes_vol.1/pdf/JES1-3.2-masumoto.pdf.]

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett., 33, L16608, doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Morrow, R., R. Coleman, J. Church, and D. Chelton, 1994: Surface eddy momentum flux and velocity variances in the Southern Ocean from Geosat altimetry. J. Phys. Oceanogr.,24, 2050–2071, doi:10.1175/1520-0485(1994)024<2050:SEMFAV>2.0.CO;2.

  • Morrow, R., M. L. Ward, A. M. Hogg, and S. Pasquet, 2010: Eddy response to Southern Ocean climate modes. J. Geophys. Res., 115, C10030, doi:10.1029/2009JC005894.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., R. J. Matear, M. A. Chamberlain, E. C. J. Oliver, and N. J. Holbrook, 2014: Storm tracks in the Southern Hemisphere subtropical oceans. J. Geophys. Res. Oceans,119, 6078–6100, doi:10.1002/2014JC009990.

  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, doi:10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and E. K. M. Chang, 1993: Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J. Atmos. Sci., 50, 212225, doi:10.1175/1520-0469(1993)050<0212:AGFIDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, doi:10.1034/j.1600-0870.1995.00108.x.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Plumb, R. A., 1983: A new look at the energy cycle. J. Atmos. Sci., 40, 16691688, doi:10.1175/1520-0469(1983)040<1669:ANLATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., and J. C. McWilliams, 1974: The baroclinic instability of the open ocean. J. Phys. Oceanogr., 4, 281294, doi:10.1175/1520-0485(1974)004<0281:TBIOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66, 441463, doi:10.1357/002224008787157458.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., H. Jones, J. Marshall, and C. Hill, 2009: Understanding the regional variability of eddy diffusivity in the Pacific sector of the Southern Ocean. J. Phys. Oceanogr., 39, 20112023, doi:10.1175/2009JPO4115.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 12391254, doi:10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, S., 2003: Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes, 650 pp.

  • Sokolov, S., and S. R. Rintoul, 2007: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37, 13941412, doi:10.1175/JPO3111.1.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., M. Ting, and L. M. Polvani, 2009: The effect of topography on storm-track intensity in a relatively simple general circulation model. J. Atmos. Sci., 66, 393411, doi:10.1175/2008JAS2742.1.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, doi:10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Venaille, A., G. K. Vallis, and K. S. Smith, 2011: Baroclinic turbulence in the ocean: Analysis with primitive equation and quasigeostrophic simulations. J. Phys. Oceanogr., 41, 16051623, doi:10.1175/JPO-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Ward, M. L., and A. M. Hogg, 2011: Establishment of momentum balance by form stress in a wind-driven channel. Ocean Modell., 40, 133146, doi:10.1016/j.ocemod.2011.08.004.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., C. Wilson, and C. W. Hughes, 2007: Ocean and atmosphere storm tracks: The role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 22672289, doi:10.1175/JPO3120.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, C., B. Sinha, and R. G. Williams, 2009: The effect of ocean dynamics and orography on atmospheric storm tracks. J. Climate, 22, 36893702, doi:10.1175/2009JCLI2651.1.

    • Search Google Scholar
    • Export Citation
  • Witter, D. L., and D. B. Chelton, 1998: Eddy–mean flow interaction in zonal oceanic jet flow along zonal ridge topography. J. Phys. Oceanogr., 28, 20192039, doi:10.1175/1520-0485(1998)028<2019:EMFIIZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 537 212 11
PDF Downloads 1544 163 6