The Vertical Structure of Large-Scale Unsteady Currents

Antoine Hochet Laboratoire de Physique des Océans, UMR6523 (CNRS, UBO, IFREMER, IRD), Brest, France

Search for other papers by Antoine Hochet in
Current site
Google Scholar
PubMed
Close
,
Alain Colin de Verdière Laboratoire de Physique des Océans, UMR6523 (CNRS, UBO, IFREMER, IRD), Brest, France

Search for other papers by Alain Colin de Verdière in
Current site
Google Scholar
PubMed
Close
, and
Robert Scott Laboratoire de Physique des Océans, UMR6523 (CNRS, UBO, IFREMER, IRD), Brest, France

Search for other papers by Robert Scott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A linear model based on the quasigeostrophic equations is constructed in order to predict the vertical structure of Rossby waves and, more broadly, of anomalies resolved by altimeter data, roughly with periods longer than 20 days and with wavelengths larger than 100 km. The subsurface field is reconstructed from sea surface height and climatological stratification. The solution is calculated in periodic rectangular regions with a 3D discrete Fourier transform. The effect of the mean flow on Rossby waves is neglected, which the authors believe is a reasonable approximation for low latitudes. The method used has been tested with an idealized double-gyre simulation [performed with the Miami Isopycnal Coordinate Ocean Model (MICOM)]. The linear model is able to give reasonable predictions of subsurface currents at low latitudes (below approximately 30°) and for relatively weak mean flow. However, the predictions degrade with stronger mean flows and higher latitudes. The subsurface velocities calculated with this model using AVISO altimetric data and velocities from current meters have also been compared. Results show that the model gives reasonably accurate results away from the top and bottom boundaries, side boundaries, and far from western boundary currents. This study found, for the regions where the model is valid, an energy partition of the traditional modes of approximately 68% in the barotropic mode and 25% in the first baroclinic mode. Only 20% of the observed kinetic energy can be attributed to free Rossby waves of long periods that propagate energy to the west.

Corresponding author address: Antoine Hochet, LPO, Avenue le Gorgeu, 29200 Brest, France. E-mail: antoine.hochet@univ-brest.fr

Abstract

A linear model based on the quasigeostrophic equations is constructed in order to predict the vertical structure of Rossby waves and, more broadly, of anomalies resolved by altimeter data, roughly with periods longer than 20 days and with wavelengths larger than 100 km. The subsurface field is reconstructed from sea surface height and climatological stratification. The solution is calculated in periodic rectangular regions with a 3D discrete Fourier transform. The effect of the mean flow on Rossby waves is neglected, which the authors believe is a reasonable approximation for low latitudes. The method used has been tested with an idealized double-gyre simulation [performed with the Miami Isopycnal Coordinate Ocean Model (MICOM)]. The linear model is able to give reasonable predictions of subsurface currents at low latitudes (below approximately 30°) and for relatively weak mean flow. However, the predictions degrade with stronger mean flows and higher latitudes. The subsurface velocities calculated with this model using AVISO altimetric data and velocities from current meters have also been compared. Results show that the model gives reasonably accurate results away from the top and bottom boundaries, side boundaries, and far from western boundary currents. This study found, for the regions where the model is valid, an energy partition of the traditional modes of approximately 68% in the barotropic mode and 25% in the first baroclinic mode. Only 20% of the observed kinetic energy can be attributed to free Rossby waves of long periods that propagate energy to the west.

Corresponding author address: Antoine Hochet, LPO, Avenue le Gorgeu, 29200 Brest, France. E-mail: antoine.hochet@univ-brest.fr
Save
  • Anderson, D. L., and A. Gill, 1975: Spin-up of a stratified ocean, with applications to upwelling. Deep-Sea Res. Oceanogr. Abstr., 22, 583596, doi:10.1016/0011-7471(75)90046-7.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Bleck, R., and D. Boudra, 1986: Wind-driven spin-up in eddy-resolving ocean models formulated in isopycnic and isobaric coordinates. J. Geophys. Res.,91, 7611–7621, doi:10.1029/JC091iC06p07611.

  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272,234238, doi:10.1126/science.272.5259.234.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and R. Tailleux, 2005: The interaction of a baroclinic mean flow with long Rossby waves. J. Phys. Oceanogr., 35, 865879, doi:10.1175/JPO2712.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Grimshaw, R., and J. S. Allen, 1988: Low-frequency baroclinic waves off coastal boundaries. J. Phys. Oceanogr., 18, 11241143, doi:10.1175/1520-0485(1988)018<1124:LFBWOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, K. L., I. S. Robinson, and P. Cipollini, 2000: Propagation characteristics of extratropical planetary waves observed in the ATSR global sea surface temperature record. J. Geophys. Res.,105, 21 927–21 945, doi:10.1029/2000JC900067.

  • Hirschi, J. J., P. D. Killworth, J. R. Blundell, and D. Cromwell, 2009: Sea surface height signals as indicators for oceanic meridional mass transports. J. Phys. Oceanogr., 39, 581601, doi:10.1175/2008JPO3923.1.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., and P. B. Rhines, 1980: An example of eddy-induced ocean circulation. J. Phys. Oceanogr., 10, 10101031, doi:10.1175/1520-0485(1980)010<1010:AEOEIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., G. Lapeyre, P. Klein, B. Chapron, and M. W. Hecht, 2008: Three-dimensional reconstruction of oceanic mesoscale currents from surface information. J. Geophys. Res.,113, C09005, doi:10.1029/2007JC004692.

  • Jacobs, G., H. Hurlburt, J. Kindle, E. Metzger, J. Mitchell, W. Teague, and A. Wallcraft, 1994: Decade-scale trans-Pacific propagation and warming effects of an El Niño anomaly. Nature,370, 360–363, doi:10.1038/370360a0.

  • Killworth, P. D., and J. R. Blundell, 1999: The effect of bottom topography on the speed of long extratropical planetary waves. J. Phys. Oceanogr., 29, 26892710, doi:10.1175/1520-0485(1999)029<2689:TEOBTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2003a: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The local problem. J. Phys. Oceanogr., 33, 784801, doi:10.1175/1520-0485(2003)33<784:LEPWPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2003b: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part II: Ray propagation and comparison with observations. J. Phys. Oceanogr., 33, 802821, doi:10.1175/1520-0485(2003)33<802:LEPWPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966, doi:10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J., and J. Pedlosky, 2004: The instability of Rossby basin modes and the oceanic eddy field. J. Phys. Oceanogr., 34, 20272041, doi:10.1175/1520-0485(2004)034<2027:TIORBM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2009: What vertical mode does the altimeter reflect? On the decomposition in baroclinic modes and on a surface-trapped mode. J. Phys. Oceanogr., 39, 28572874, doi:10.1175/2009JPO3968.1.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, doi:10.1175/JPO2840.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., and J. C. McWilliams, 1994: The evolution of boundary pressure in ocean basins. J. Phys. Oceanogr., 24, 13171338, doi:10.1175/1520-0485(1994)024<1317:TEOBPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Brien, R. C., P. Cipollini, and J. R. Blundell, 2013: Manifestation of oceanic Rossby waves in long-term multiparametric satellite datasets. Remote Sens. Environ., 129, 111121, doi:10.1016/j.rse.2012.10.024.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and A. Colin de Verdière, 2014: The ocean general circulation near 1000-m depth. J. Phys. Oceanogr., 44, 384–409, doi:10.1175/JPO-D-13-030.1.

    • Search Google Scholar
    • Export Citation
  • Osychny, V., and P. Cornillon, 2004: Properties of Rossby waves in the North Atlantic estimated from satellite data. J. Phys. Oceanogr., 34, 6176, doi:10.1175/1520-0485(2004)034<0061:PORWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Philander, S., 1978: Forced oceanic waves. Rev. Geophys., 16, 1546, doi:10.1029/RG016i001p00015.

  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, doi:10.1175/JPO2807.1.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and D. G. Furnival, 2012: Assessment of traditional and new eigenfunction bases applied to extrapolation of surface geostrophic current time series to below the surface in an idealized primitive equation simulation. J. Phys. Oceanogr., 42, 165178, doi:10.1175/2011JPO4523.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Vanneste, 2013: A surface-aware projection basis for quasigeostrophic flow. J. Phys. Oceanogr., 43, 548–562, doi:10.1175/JPO-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., and J. C. McWilliams, 2000: Acceleration, creation, and depletion of wind-driven, baroclinic Rossby waves over an ocean ridge. J. Phys. Oceanogr., 30, 21862213, doi:10.1175/1520-0485(2000)030<2186:ACADOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., and J. C. McWilliams, 2001: The effect of bottom pressure decoupling on the speed of extratropical, baroclinic Rossby waves. J. Phys. Oceanogr., 31, 14611476, doi:10.1175/1520-0485(2001)031<1461:TEOBPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, and K. S. Smith, 2009: Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence. J. Geophys. Res.,114, C02005, doi:10.1029/2008JC005055.

  • Wang, J., G. R. Flierl, J. H. LaCasce, J. L. McClean, and A. Mahadevan, 2013: Reconstructing the ocean’s interior from surface data. J. Phys. Oceanogr., 43, 16111626, doi:10.1175/JPO-D-12-0204.1.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 1977: Annual forcing of baroclinic long waves in the tropical North Pacific Ocean. J. Phys. Oceanogr., 7, 5061, doi:10.1175/1520-0485(1977)007<0050:AFOBLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wright, C. J., R. B. Scott, D. Furnival, P. Ailliot, and F. Vermet, 2013: Global observations of ocean-bottom subinertial current dissipation. J. Phys. Oceanogr., 43, 402–417, doi:10.1175/JPO-D-12-082.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, doi:10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2010: Toward a midlatitude ocean frequency–wavenumber spectral density and trend determination. J. Phys. Oceanogr., 40, 22642281, doi:10.1175/2010JPO4376.1.

    • Search Google Scholar
    • Export Citation
  • Zang, X., and C. Wunsch, 1999: The observed dispersion relationship for North Pacific Rossby wave motions. J. Phys. Oceanogr., 29, 21832190, doi:10.1175/1520-0485(1999)029<2183:TODRFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 102 41 1
PDF Downloads 44 22 1