On the Dynamics of Flows Induced by Topographic Ridges

Changheng Chen Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Changheng Chen in
Current site
Google Scholar
PubMed
Close
,
Igor Kamenkovich Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Igor Kamenkovich in
Current site
Google Scholar
PubMed
Close
, and
Pavel Berloff Department of Mathematics, Imperial College London, London, United Kingdom

Search for other papers by Pavel Berloff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study describes a nonlocal mechanism for the generation of oceanic alternating jets by topographic ridges. The dynamics of these jets is examined using a baroclinic quasigeostrophic model configured with an isolated meridional ridge. The zonal topographic slopes of the ridge lead to the formation of a system of currents, consisting of mesoscale eddies, meridional currents over the ridge, and multiple zonal jets in the far field. Dynamical analysis shows that transient eddies are vital in sustaining the deep meridional currents over the ridge, which in turn play a key role in the upper-layer potential vorticity (PV) balance. The zonal jets in the rest of the domain owe their existence to the eddy forcing over the ridge but are maintained by the local Reynolds and form stress eddy forcing. The analysis further shows that a broad stable current that either becomes locally nonzonal or encounters a topographic ridge tends to become unstable. This instability provides a vorticity source and generates multiple zonal jets in the far field through a nonlocal mechanism.

Corresponding author address: Changheng Chen, Division of MPO, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: cchen@rsmas.miami.edu

Abstract

This study describes a nonlocal mechanism for the generation of oceanic alternating jets by topographic ridges. The dynamics of these jets is examined using a baroclinic quasigeostrophic model configured with an isolated meridional ridge. The zonal topographic slopes of the ridge lead to the formation of a system of currents, consisting of mesoscale eddies, meridional currents over the ridge, and multiple zonal jets in the far field. Dynamical analysis shows that transient eddies are vital in sustaining the deep meridional currents over the ridge, which in turn play a key role in the upper-layer potential vorticity (PV) balance. The zonal jets in the rest of the domain owe their existence to the eddy forcing over the ridge but are maintained by the local Reynolds and form stress eddy forcing. The analysis further shows that a broad stable current that either becomes locally nonzonal or encounters a topographic ridge tends to become unstable. This instability provides a vorticity source and generates multiple zonal jets in the far field through a nonlocal mechanism.

Corresponding author address: Changheng Chen, Division of MPO, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: cchen@rsmas.miami.edu
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 2107–2126, doi:10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Afanasyev, Y. D., S. O’Leary, P. B. Rhines, and E. Lindahl, 2012: On the origin of jets in the ocean. Geophys. Astrophys. Fluid Dyn., 106, 113–137, doi:10.1080/03091929.2011.562896.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and G. R. Flierl, 2004: Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J. Phys. Oceanogr., 34, 77–93, doi:10.1175/1520-0485(2004)034<0077:EOMFDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., P. B. Rhines, H.-P. Huang, and M. E. McIntyre, 2007: The jet-stream conundrum. Science, 315, 467–468, doi:10.1126/science.1131375.

    • Search Google Scholar
    • Export Citation
  • Belmadani, A., N. A. Maximenko, J. P. Mccreary, R. Furue, O. V. Melnichenko, N. Schneider, and E. D. Lorenzo, 2013: Linear wind-forced beta plumes with application to the Hawaiian Lee Countercurrent. J. Phys. Oceanogr., 43, 2071–2094, doi:10.1175/JPO-D-12-0194.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., 2005: On rectification of randomly forced flows. J. Mar. Res., 63, 497–527, doi:10.1357/0022240054307894.

  • Berloff, P., and I. Kamenkovich, 2013: On spectral analysis of mesoscale eddies. Part II: Nonlinear analysis. J. Phys. Oceanogr., 43, 2528–2544, doi:10.1175/JPO-D-12-0233.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009a: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395–425, doi:10.1017/S0022112009006375.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009b: A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis. J. Phys. Oceanogr., 39, 2711–2734, doi:10.1175/2009JPO4093.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., S. Karabasov, J. T. Farrar, and I. Kamenkovich, 2011: On latency of multiple zonal jets in the oceans. J. Fluid Mech., 686, 534–567, doi:10.1017/jfm.2011.345.

    • Search Google Scholar
    • Export Citation
  • Boland, E. J. D., A. F. Thompson, E. Shuckburgh, and P. H. Haynes, 2012: The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr., 42, 1635–1651, doi:10.1175/JPO-D-11-0152.1.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and I. Kamenkovich, 2013: Effects of topography on baroclinic instability. J. Phys. Oceanogr., 43, 790–804, doi:10.1175/JPO-D-12-0145.1.

    • Search Google Scholar
    • Export Citation
  • Connaughton, C. P., B. T. Nadiga, S. V. Nazarenko, and B. E. Quinn, 2010: Modulational instability of Rossby and drift waves and generation of zonal jets. J. Fluid Mech., 654, 207–231, doi:10.1017/S0022112010000510.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., and V. M. Gryanik, 2004: Barotropic beta-plane turbulence in a regime with strong zonal jets revisited. J. Atmos. Sci., 61, 2283–2295, doi:10.1175/1520-0469(2004)061<2283:BBTIAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, A., E. Di Lorenzo, H. Luo, A. Belmadani, N. Maximenko, O. Melnichenko, and N. Schneider, 2014: Mechanisms for the emergence of ocean striations in the North Pacific. Geophys. Res. Lett., 41, 948–953, doi:10.1002/2013GL057956.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855–874, doi:10.1175/2007JAS2227.1.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., 2004: The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett.,31, L13303, doi:10.1029/2004GL019691.

  • Galperin, B., S. Sukoriansky, N. Dikovskaya, P. L. Read, Y. H. Yamazaki, and R. Wordsworth, 2006: Anisotropic turbulence and zonal jets in rotating flows with a β-effect. Nonlinear Processes Geophys., 13, 83–98, doi:10.5194/npg-13-83-2006.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1992: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr., 22, 1033–1046, doi:10.1175/1520-0485(1992)022<1033:RTSFLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology.4th ed. Academic Press, 535 pp.

  • Hristova, H. G., J. Pedlosky, and M. A. Spall, 2008: Radiating instability of a meridional boundary current. J. Phys. Oceanogr., 38, 2294–2307, doi:10.1175/2008JPO3853.1.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I. V., and J. Pedlosky, 1994: Instability of baroclinic currents that are locally nonzonal. J. Atmos. Sci., 51, 2418–2433, doi:10.1175/1520-0469(1994)051<2418:IOBCTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I. V., and J. Pedlosky, 1996: Radiating instability of nonzonal ocean currents. J. Phys. Oceanogr., 26, 622–643, doi:10.1175/1520-0485(1996)026<0622:RIONOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karabasov, S. A., P. S. Berloff, and V. M. Goloviznin, 2009: CABARET in the ocean gyres. Ocean Modell., 30, 155–168, doi:10.1016/j.ocemod.2009.06.009.

    • Search Google Scholar
    • Export Citation
  • Kondratyev, K., and G. Hunt, 1982: Weather and Climate on Planets.Elsevier, 768 pp.

  • MacCready, P., and P. B. Rhines, 2001: Meridional transport across a zonal channel: Topographic localization. J. Phys. Oceanogr., 31, 1427–1439, doi:10.1175/1520-0485(2001)031<1427:MTAAZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the World Ocean. Geophys. Res. Lett.,32, L12607, doi:10.1029/2005GL022728.

  • Maximenko, N. A., O. V. Melnichenko, P. P. Niiler, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett.,35, L08603, doi:10.1029/2008GL033267.

  • Okuno, A., and A. Masuda, 2003: Effect of horizontal divergence on the geostrophic turbulence on a beta-plane: Suppression of the Rhines effect. Phys. Fluids, 15, 56–65, doi:10.1063/1.1524188.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., A. Czaja, and J. H. LaCasce, 2012: The emergence of zonal ocean jets under large-scale stochastic wind forcing. Geophys. Res. Lett.,39, L11606, doi:10.1029/2012GL051684.

  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50, 2073–2106, doi:10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417–443, doi:10.1017/S0022112075001504.

  • Scott, R. K., and D. G. Dritschel, 2012: The structure of zonal jets in geostrophic turbulence. J. Fluid Mech., 711, 576–598, doi:10.1017/jfm.2012.410.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2007: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37, 1394–1412, doi:10.1175/JPO3111.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257–278, doi:10.1175/2009JPO4218.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956–972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and R. L. Panetta, 1994: Multiple zonal jets in a quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 24, 2263–2277, doi:10.1175/1520-0485(1994)024<2263:MZJIAQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 1346–1362, doi:10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., M. A. Spall, G. R. Flierl, and P. Malanotte-Rizzoli, 2012: A new mechanism for the generation of quasi-zonal jets in the ocean. Geophys. Res. Lett.,39, L10601, doi:10.1029/2012GL051861.

  • Witter, D. L., and D. B. Chelton, 1998: Eddy–mean flow interaction in zonal oceanic jet flow along zonal ridge topography. J. Phys. Oceanogr., 28, 2019–2039, doi:10.1175/1520-0485(1998)028<2019:EMFIIZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, R. B., and M. E. McIntyre, 2010: A general theorem on angular-momentum changes due to potential vorticity mixing and on potential-energy changes due to buoyancy mixing. J. Atmos. Sci., 67, 1261–1274, doi:10.1175/2009JAS3293.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 419 197 7
PDF Downloads 151 41 1