Fixed-Point Observation of Mixed Layer Evolution in the Seasonally Ice-Free Chukchi Sea: Turbulent Mixing due to Gale Winds and Internal Gravity Waves

Yusuke Kawaguchi Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan, and Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Yusuke Kawaguchi in
Current site
Google Scholar
PubMed
Close
,
Shigeto Nishino Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan

Search for other papers by Shigeto Nishino in
Current site
Google Scholar
PubMed
Close
, and
Jun Inoue National Institute of Polar Research, Tokyo, and Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan

Search for other papers by Jun Inoue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A fixed-point observation using the R/V Mirai was conducted in the ice-free northern Chukchi Sea of the Arctic Ocean during September of 2013. During the program the authors performed repeated microstructure measurements to reveal the temporal evolution of the surface mixed layer and mixing processes in the upper water column. The shelf region was initially characterized by a distinct two-layer system comprising a warmer/fresher top layer and a colder/saltier bottom layer. During the two-week observation period, the top-layer water showed two types of mixing processes: near-surface turbulence due to strong wind forcing and subsurface mixing due to internal gravity waves. In the first week, when the top layer was stratified with fresh sea ice meltwater, turbulent energy related to internal waves propagated through the subsurface stratification, resulting in a mechanical overturning near the pycnocline, followed by enhanced mixing there. In the second week, gale winds directly stirred up the upper water and then established a deeper homogenous layer. The combination of internal wave mixing and wind-driven turbulence may contribute to releasing the oceanic heat into the atmosphere, consequently promoting the preconditioning of surface water freezing.

Corresponding author address: Yusuke Kawaguchi, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Box 355640, Seattle, WA 98105. E-mail: ykawaguchi@apl.washington.edu

Abstract

A fixed-point observation using the R/V Mirai was conducted in the ice-free northern Chukchi Sea of the Arctic Ocean during September of 2013. During the program the authors performed repeated microstructure measurements to reveal the temporal evolution of the surface mixed layer and mixing processes in the upper water column. The shelf region was initially characterized by a distinct two-layer system comprising a warmer/fresher top layer and a colder/saltier bottom layer. During the two-week observation period, the top-layer water showed two types of mixing processes: near-surface turbulence due to strong wind forcing and subsurface mixing due to internal gravity waves. In the first week, when the top layer was stratified with fresh sea ice meltwater, turbulent energy related to internal waves propagated through the subsurface stratification, resulting in a mechanical overturning near the pycnocline, followed by enhanced mixing there. In the second week, gale winds directly stirred up the upper water and then established a deeper homogenous layer. The combination of internal wave mixing and wind-driven turbulence may contribute to releasing the oceanic heat into the atmosphere, consequently promoting the preconditioning of surface water freezing.

Corresponding author address: Yusuke Kawaguchi, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Box 355640, Seattle, WA 98105. E-mail: ykawaguchi@apl.washington.edu
Save
  • Batchelor, G. K., 1959: Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech., 5, 113–133, doi:10.1017/S002211205900009X.

    • Search Google Scholar
    • Export Citation
  • Berner, J., and Coauthors, 2005: Arctic Climate Impact Assessment. Cambridge University Press, 1042 pp.

  • Carmack, E., D. Barber, J. Christensen, R. Macdonald, B. Rudels, and E. Sakshaug, 2006: Climate variability and physical forcing of the food webs and the carbon budget on pan-Arctic shelves. Prog. Oceanogr., 71, 145–181, doi:10.1016/j.pocean.2006.10.005.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gerstern, and L. Stock, 2008: Accelerated decline in the Arctic Sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and J. H. Morison, 1992: Internal waves and mixing in the Arctic Ocean.. Deep-Sea Res.,39A, S459–S484, doi:10.1016/S0198-0149(06)80016-6.

    • Search Google Scholar
    • Export Citation
  • Delisi, D. P., and I. Orlanski, 1975: On the role of density jump in the reflexion and breaking of internal gravity waves. J. Fluid Mech., 69, 445–464, doi:10.1017/S0022112075001516.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., 1973: A time-dependent model of the upper ocean. J. Phys. Oceanogr., 3, 173–184, doi:10.1175/1520-0485(1973)003<0173:ATDMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and W. H. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225–264, doi:10.1080/03091927208236082.

    • Search Google Scholar
    • Export Citation
  • Gonella, J., 1972: A rotary-component method for analyzing meteorological and oceanographic vector time series. Deep-Sea Res. Oceanogr. Abstr., 19, 833–846, doi:10.1016/0011-7471(72)90002-2.

    • Search Google Scholar
    • Export Citation
  • Halle, C., and R. Pinkel, 2003: Internal wave variability in the Beaufort Sea during the winter of 1993/1994. J. Geophys. Res., 108, 3210, doi:10.1029/2000JC000703.

    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1959: Turbulence: An Introduction to Its Mechanism and Theory. McGraw-Hill, 586 pp.

  • Inoue, J., and M. E. Hori, 2011: Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification? Geophys. Res. Lett., 38, L12502, doi:10.1029/2011GL047696.

    • Search Google Scholar
    • Export Citation
  • Kato, H., and O. M. Phillips, 1969: On the penetration of a turbulent layer into a stratified fluid. J. Fluid Mech., 37, 643–655, doi:10.1017/S0022112069000784.

    • Search Google Scholar
    • Export Citation
  • Kawaguchi, Y., T. Tamura, S. Nishino, T. Kikuchi, M. Itoh, and H. Mitsudera, 2011: Numerical study of winter water formation in the Chukchi Sea: Roles and impacts of coastal polynyas. J. Geophys. Res., 116, C07025, doi:10.1029/2010JC006606.

    • Search Google Scholar
    • Export Citation
  • Kawaguchi, Y., T. Kikuchi, and R. Inoue, 2014: Vertical heat transfer based on direct microstructure measurements in the ice-free Pacific-side Arctic Ocean: The role and impact of the Pacific water intrusion. J. Oceanogr., 70, 343–353, doi:10.1007/s10872-014-0234-8.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Bound.-Layer Meteor., 9, 91–112, doi:10.1007/BF00232256.

    • Search Google Scholar
    • Export Citation
  • Landahl, M. T., and E. Mollo-Christensen, 1992: Turbulence and Random Processes in Fluid Mechanics. 2nd ed. Cambridge University Press, 168 pp.

  • Levine, M. D., 2002: A modification of the Garret–Munk internal wave spectrum. J. Phys. Oceanogr., 32, 3166–3181, doi:10.1175/1520-0485(2002)032<3166:AMOTGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., C. A. Paulson, and J. H. Morison, 1985: Internal waves in the Arctic Ocean: Comparison with lower latitude observations. J. Phys. Oceanogr., 15, 800–809, doi:10.1175/1520-0485(1985)015<0800:IWITAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., H. L. Simmons, C. A. Stoudt, and J. K. Hutchings, 2014: Near-inertial internal waves and sea ice in the Beaufort Sea. J. Phys. Oceanogr., 44, 2212–2234, doi:10.1175/JPO-D-13-0160.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., J.-S. Lee, I.-C. Pang, and S.-H. Kim, 2006: Monitoring the marine environment of the East China Sea with satellite-tracked drifters: Behavior Chanjiang diluted water. Bull. Coastal Oceanogr., 44, 33–38.

    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1979: A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84, 338–346, doi:10.1029/JC084iC01p00338.

    • Search Google Scholar
    • Export Citation
  • McPhee, M., 2008: Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes. Springer, 215 pp.

  • Moum, J. N., M. C. Gregg, R. C. Lien, and M. E. Carr, 1995: Comparison of turbulence kinetic energy dissipation rate estimates from two ocean microstructure profilers. J. Atmos. Oceanic Technol., 12, 346–366, doi:10.1175/1520-0426(1995)012<0346:COTKED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mowbray, D. E., and B. S. H. Rarity, 1967: A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech., 28, 1–16, doi:10.1017/S0022112067001867.

    • Search Google Scholar
    • Export Citation
  • Müller, P., and M. Briscoe, 2000: Diapycnal mixing and internal waves. Oceanography, 13, 98–103, doi:10.5670/oceanog.2000.40.

  • Nasmyth, P. W., 1970: Oceanic turbulence. Ph.D. dissertation, British Columbia University, 69 pp.

  • Niiler, P. P., A. S. Sybrandy, K. Bi, P. M. Poulain, and D. Bitterman, 1995: Measurements of the water-following capability of holey-sock and TRISTAR drifters. Deep-Sea Res. I, 42, 1951–1964, doi:10.1016/0967-0637(95)00076-3.

    • Search Google Scholar
    • Export Citation
  • Nishino, S., 2013: R/V Mirai cruise report MR13-06. JAMSTEC Rep., 226 pp. [Available online at www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/MR13-06_leg1-2_all.pdf.]

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83–89, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Res. Fluid Dyn., 3, 321–345, doi:10.1080/03091927208236085.

  • Padman, L., and T. M. Dillon, 1991: Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment. J. Geophys. Res., 96, 4769–4782, doi:10.1029/90JC02260.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and S. Erofeeva, 2004: A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett., 31, L02303, doi:10.1029/2003GL019003.

    • Search Google Scholar
    • Export Citation
  • Panchev, S., and D. Kesich, 1969: Energy spectrum of isotropic turbulence at large wave-numbers. C. R. Acad. Bulg. Sci., 22, 627–630.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929–937, doi:10.1016/S0098-3004(02)00013-4.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, 2007: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett., 34, L19505, doi:10.1029/2007GL031480.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Petty, A. A., P. R. Holland, and D. L. Feltham, 2013: Sea ice and the ocean mixed layer over the Antarctic shelf seas. Cryosphere Discuss., 7, 4321–4377, doi:10.5194/tcd-7-4321-2013.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. A. Woodgate, 2009: Observations of internal wave generation in the seasonally-ice free Arctic. Geophys. Res. Lett., 36, L23604, doi:10.1029/2009GL041291.

    • Search Google Scholar
    • Export Citation
  • Rigor, I., and M. Wallace, 2004: Variation in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401, doi:10.1029/2004GL019492.

    • Search Google Scholar
    • Export Citation
  • Sato, K., J. Inoue, Y.-M. Kodama, and J. E. Overland, 2012: Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn. Geophys. Res. Lett., 39, L10503, doi:10.1029/2012GL051850.

    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., T. P. Stanton, M. G. McPhee, J. H. Morison, and D. G. Martinson, 2009: Role of the upper ocean in the energy budget of Arctic sea ice during SHEBA. J. Geophys. Res., 114, C06012, doi:10.1029/2008JC004991.

    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., S. D. L. Rosa, I. Fer, M. Nicolaus, M. Tjernström, and M. G. McPhee, 2011: Mixing, heat fluxes and heat content evolution of the Arctic Ocean mixed layer. Ocean Sci., 7, 335–349, doi:10.5194/os-7-335-2011.

    • Search Google Scholar
    • Export Citation
  • Stips, A., and H. Prandke, 2000: Recommended algorithm for dissipation rate calculation within PROVESS European Commission. JRC Space Applications Institute Tech. Note 1.00.116, 17 pp.

  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255–275, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weingartner, T., K. Aagaard, R. Woodgate, S. Danielson, Y. Sasaki, and D. Cavalieri, 2005: Circulation on the north central Chukchi Sea shelf. Deep-Sea Res. II, 52, 3150–3174, doi:10.1016/j.dsr2.2005.10.015.

    • Search Google Scholar
    • Export Citation
  • Wesson, J. C., and M. C. Gregg, 1994: Mixing at Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res., 99, 9847–9878, doi:10.1029/94JC00256.

    • Search Google Scholar
    • Export Citation
  • Wolk, F., H. Yamazaki, L. Seuront, and R. G. Lueck, 2002: A new free-fall profiler for measuring biophysical microstructure. J. Atmos. Oceanic Technol., 19, 780–793, doi:10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, H., 1990: Stratified turbulence near a critical dissipation rate. J. Phys. Oceanogr., 20, 1583–1598, doi:10.1175/1520-0485(1990)020<1583:STNACD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 430 137 4
PDF Downloads 279 71 3